J. Phys. Soc. Jpn. 85, 114604 (2016) [4 Pages]
FULL PAPERS

Phase Transition Dynamics of Three Types of Water within Poly(N,N-dimethylacrylamide) Hydrogels

+ Affiliations
Department of Applied Chemistry, Meiji University, Kawasaki 214-8571, Japan

Water in hydrogels has been classified into three types: bound, intermediate, and free water. To investigate the individual phase transition dynamics for each type of water, differential scanning calorimetic (DSC) curves and Raman spectra of poly(N,N-dimethylacrylamide) hydrogels were measured with heating from 130 to 310 K. Bound and intermediate water showed glassy initial states at 130 K, whereas free water became hexagonal ice (Ih) structure. Intermediate water in glassy state undergoes four phase transition steps: glass-to-liquid transition (at 160–190 K), crystallization from liquid state to cubic ice (Ic) (at 200–230 K), Ic–Ih transition (at 240–250 K), and melting (at 250–273 K). It is concluded that pre-melting of ice, which has been observed in various polymer hydrogels, results from the exothermic Ic–Ih transition of intermediate water.

©2016 The Physical Society of Japan

References

  • 1 N. Peppas and R. E. Benner, Biomaterials 1, 158 (1980). 10.1016/0142-9612(80)90039-3 CrossrefGoogle Scholar
  • 2 J. Kopecek, J. Polym. Sci., Part A 47, 5929 (2009). 10.1002/pola.23607 CrossrefGoogle Scholar
  • 3 M. S. Jhon and J. D. Andrade, J. Biomed. Mater. Res. 7, 509 (1973). 10.1002/jbm.820070604 CrossrefGoogle Scholar
  • 4 T. Ikeda-Fukazawa, T. Ikeda, M. Tabata, M. Hattori, M. Aizawa, S. Yunoki, and Y. Sekine, J. Polym. Sci., Part B 51, 1017 (2013). 10.1002/polb.23305 CrossrefGoogle Scholar
  • 5 K. Hofer, E. Mayer, and G. P. Johari, J. Phys. Chem. 94, 2689 (1990). 10.1021/j100369a083 CrossrefGoogle Scholar
  • 6 E. F. Burton and W. F. Oliver, Proc. R. Soc. London, Ser. A 153, 166 (1935). 10.1098/rspa.1935.0229 CrossrefGoogle Scholar
  • 7 G. Smyth, F. X. Quinn, and V. J. McBrierty, Macromolecules 21, 3198 (1988). 10.1021/ma00189a013 CrossrefGoogle Scholar
  • 8 M. Pastorczak, G. Dominguez-Espinosa, L. Okrasa, M. Pyda, M. Kozanecki, S. Kadlubowski, J. M. Rosiak, and J. Ulanski, Colloid Polym. Sci. 292, 1775 (2014). 10.1007/s00396-014-3283-z CrossrefGoogle Scholar
  • 9 L. Bosio, G. P. Johari, M. Oumezzine, and J. Teixeira, Chem. Phys. Lett. 188, 113 (1992). 10.1016/0009-2614(92)85098-U CrossrefGoogle Scholar
  • 10 Y. Sekine, R. Kobayashi, S. Chi, J. A. Fernandez-Baca, K. Suzuya, F. Fujisaki, K. Ikeda, T. Otomo, T. Ikeda-Fukazawa, H. Yamauchi, and H. Fukazawa, JPS Conf. Proc. 8, 033009 (2015). 10.7566/JPSCP.8.033009 LinkGoogle Scholar
  • 11 M. Sugisaki, H. Suga, and S. Seki, Bull. Chem. Soc. Jpn. 41, 2591 (1968). 10.1246/bcsj.41.2591 CrossrefGoogle Scholar
  • 12 A. J. Nozik and M. Kaplan, Chem. Phys. Lett. 1, 391 (1967). 10.1016/0009-2614(67)80045-9 CrossrefGoogle Scholar
  • 13 Y. Sekine and T. Ikeda-Fukazawa, J. Chem. Phys. 130, 034501 (2009). 10.1063/1.3058616 CrossrefGoogle Scholar
  • 14 A. Higuchi and T. Iijima, Polymer 26, 1833 (1985). 10.1016/0032-3861(85)90011-4 CrossrefGoogle Scholar
  • 15 T. Hatakeyama, H. Yoshida, and H. Hatakeyama, Polymer 28, 1282 (1987). 10.1016/0032-3861(87)90438-1 CrossrefGoogle Scholar
  • 16 H. B. Lee, M. S. Jhon, and J. Andrade, J. Colloid Interface Sci. 51, 225 (1975). 10.1016/0021-9797(75)90107-1 CrossrefGoogle Scholar
  • 17 Y. Sekine and T. Ikeda-Fukazawa, J. Phys. Chem. B 114, 3419 (2010). 10.1021/jp906826q CrossrefGoogle Scholar
  • 18 T. Hatakeyema, A. Yamauchi, and H. Hatakeyema, Eur. Polym. J. 20, 61 (1984). 10.1016/0014-3057(84)90223-4 CrossrefGoogle Scholar
  • 19 E. Whalley, Can. J. Chem. 55, 3429 (1977). 10.1139/v77-481 CrossrefGoogle Scholar
  • 20 I. Kohl, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 2, 1579 (2000). 10.1039/a908688i CrossrefGoogle Scholar
  • 21 T. Ikeda-Fukazawa and K. Kawamura, J. Chem. Phys. 120, 1395 (2004). 10.1063/1.1634250 CrossrefGoogle Scholar