J. Phys. Soc. Jpn. 87, 034701 (2018) [6 Pages]
FULL PAPERS

Conductance Fluctuations in Disordered 2D Topological Insulator Wires: From Quantum Spin-Hall to Ordinary Phases

+ Affiliations
1Department of Physics, National Taiwan University, Taipei 10617, Taiwan2Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan3Departamento de Física Teórica and BIFI, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain

Impurities and defects are ubiquitous in topological insulators (TIs) and thus understanding the effects of disorder on electronic transport is important. We calculate the distribution of the random conductance fluctuations P(G) of disordered 2D TI wires modeled by the Bernevig–Hughes–Zhang (BHZ) Hamiltonian with realistic parameters. As we show, the disorder drives the TIs into different regimes: metal (M), quantum spin-Hall insulator (QSHI), and ordinary insulator (OI). By varying the disorder strength and Fermi energy, we calculate analytically and numerically P(G) across the entire phase diagram. The conductance fluctuations follow the statistics of the unitary universality class β = 2. At strong disorder and high energy, however, the size of the fluctuations δG reaches the universal value of the orthogonal symmetry class (β = 1). At the QSHI-M and QSHI-OI crossovers, the interplay between edge and bulk states plays a key role in the statistical properties of the conductance.

©2018 The Physical Society of Japan

References

  • 1 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). 10.1103/RevModPhys.83.1057 CrossrefGoogle Scholar
  • 2 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). 10.1103/PhysRevLett.95.226801 CrossrefGoogle Scholar
  • 3 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). 10.1103/RevModPhys.82.3045 CrossrefGoogle Scholar
  • 4 T.-W. Chen, Z.-R. Xiao, D.-W. Chiou, and G.-Y. Guo, Phys. Rev. B 84, 165453 (2011). 10.1103/PhysRevB.84.165453 CrossrefGoogle Scholar
  • 5 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006). 10.1126/science.1133734 CrossrefGoogle Scholar
  • 6 H. Jiang, L. Wang, Q.-f. Sun, and X. C. Xie, Phys. Rev. B 80, 165316 (2009). 10.1103/PhysRevB.80.165316 CrossrefGoogle Scholar
  • 7 J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev. Lett. 102, 136806 (2009). 10.1103/PhysRevLett.102.136806 CrossrefGoogle Scholar
  • 8 K.-I. Imura, Y. Kuramoto, and K. Nomura, Phys. Rev. B 80, 085119 (2009). 10.1103/PhysRevB.80.085119 CrossrefGoogle Scholar
  • 9 C.-Z. Chen, H. Liu, H. Jiang, Q.-F. Sun, Z. Wang, and X. C. Xie, Phys. Rev. B 91, 214202 (2015). 10.1103/PhysRevB.91.214202 CrossrefGoogle Scholar
  • 10 Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010). 10.1103/PhysRevLett.105.206601 CrossrefGoogle Scholar
  • 11 J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010). 10.1103/PhysRevLett.105.156803 CrossrefGoogle Scholar
  • 12 S. Cho, B. Dellabetta, R. Zhong, J. Schneeloch, T. Liu, G. Gu, M. J. Gilbert, and N. Mason, Nat. Commun. 6, 7634 (2015). 10.1038/ncomms8634 CrossrefGoogle Scholar
  • 13 R. Du, H.-C. Hsu, A. C. Balram, Y. Yin, S. Dong, W. Dai, W. Zhao, D. S. Kim, S.-Y. Yu, J. Wang, X. Li, S. E. Mohney, S. Tadigadapa, N. Samarth, M. H. W. Chan, J. K. Jain, C.-X. Liu, and Q. Li, Phys. Rev. B 93, 195402 (2016). 10.1103/PhysRevB.93.195402 CrossrefGoogle Scholar
  • 14 Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, U.K., 1997). CrossrefGoogle Scholar
  • 15 C. Beenakker, Rev. Mod. Phys. 69, 731 (1997). 10.1103/RevModPhys.69.731 CrossrefGoogle Scholar
  • 16 P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985). 10.1103/PhysRevLett.55.1622 CrossrefGoogle Scholar
  • 17 S. Matsuo, K. Chida, D. Chiba, T. Ono, K. Slevin, K. Kobayashi, T. Ohtsuki, C.-Z. Chang, K. He, X.-C. Ma, and Q.-K. Xue, Phys. Rev. B 88, 155438 (2013). 10.1103/PhysRevB.88.155438 CrossrefGoogle Scholar
  • 18 A. Kandala, A. Richardella, D. Zhang, T. C. Flanagan, and N. Samarth, Nano Lett. 13, 2471 (2013). 10.1021/nl4012358 CrossrefGoogle Scholar
  • 19 Z. Li, Y. Meng, J. Pan, T. Chen, X. Hong, S. Li, X. Wang, F. Song, and B. Wang, Appl. Phys. Express 7, 065202 (2014). 10.7567/APEX.7.065202 CrossrefGoogle Scholar
  • 20 Z. Li, T. Chen, H. Pan, F. Song, B. Wang, J. Han, Y. Qin, X. Wang, R. Zhang, J. Wan, D. Xing, and G. Wang, Sci. Rep. 2, 595 (2012). 10.1038/srep00595 CrossrefGoogle Scholar
  • 21 Y. Takagaki, Phys. Rev. B 85, 155308 (2012). 10.1103/PhysRevB.85.155308 CrossrefGoogle Scholar
  • 22 D.-H. Choe and K. J. Chang, Sci. Rep. 5, 10997 (2015). 10.1038/srep10997 CrossrefGoogle Scholar
  • 23 K. Kobayashi, T. Ohtsuki, H. Obuse, and K. Slevin, Phys. Rev. B 82, 165301 (2010). 10.1103/PhysRevB.82.165301 CrossrefGoogle Scholar
  • 24 D. Xu, J. Qi, J. Liu, V. Sacksteder, X. C. Xie, and H. Jiang, Phys. Rev. B 85, 195140 (2012). 10.1103/PhysRevB.85.195140 CrossrefGoogle Scholar
  • 25 I. Knez and R. Du, Front. Phys. 7, 200 (2012). 10.1007/s11467-011-0204-1 CrossrefGoogle Scholar
  • 26 C. X. Liu, T. L. Hughes, X.-L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. 100, 236601 (2008). 10.1103/PhysRevLett.100.236601 CrossrefGoogle Scholar
  • 27 P. A. Mello and N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations (Oxford University Press, Oxford, U.K., 2004). CrossrefGoogle Scholar
  • 28 In the ballistic regime, RMT has been also successfully applied to investigated the conductance fluctuations in chaotic quantum dots based on graphene or TIs materials: T. C. Vasconcelos, J. G. G. S. Ramos, and A. L. R. Barbosa, Phys. Rev. B 93, 115120 (2016). 10.1103/PhysRevB.93.115120 CrossrefGoogle Scholar
  • 29 D.-H. Xu, J.-H. Gao, C.-X. Liu, J.-H. Sun, F.-C. Zhang, and Y. Zhou, Phys. Rev. B 89, 195104 (2014). 10.1103/PhysRevB.89.195104 CrossrefGoogle Scholar
  •   (30) We point out that, contrary to the model studied here, in the so-called topological Anderson insulator introduced in 7, there is no inversion of the bands (the mass term was fixed to a positive value), i.e., edge states are absent, in the clean limit. The existence of edge states was shown at intermediate values of the disorder strength. Google Scholar
  • 31 J. R. Bindel, M. Pezzotta, J. Ulrich, M. Liebmann, E. Ya. Sherman, and M. Morgenstern, Nat. Phys. 12, 920 (2016). 10.1038/nphys3774 CrossrefGoogle Scholar
  • 32 S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, U.K., 1995). CrossrefGoogle Scholar
  • 33 C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12, 203 (2013). 10.1007/s10825-013-0458-7 CrossrefGoogle Scholar
  • 34 F. Haake, Quantum Signatures of Chaos (Springer, Heidelberg, 2010). CrossrefGoogle Scholar
  • 35 C. W. J. Beenakker and B. Rejaei, Phys. Rev. Lett. 71, 3689 (1993). 10.1103/PhysRevLett.71.3689 CrossrefGoogle Scholar
  • 36 K. A. Muttalib, P. Wölfle, and V. A. Gopar, Ann. Phys. 308, 156 (2003). 10.1016/S0003-4916(03)00136-2 CrossrefGoogle Scholar
  • 37 V. A. Gopar and R. A. Molina, Phys. Rev. B 81, 195415 (2010). 10.1103/PhysRevB.81.195415 CrossrefGoogle Scholar
  •   (38) We have verified numerically that statement: At E = 20 meV we have calculated the standard deviation δG at different values of the SOC (A = 18.5, 12, and 6 meV) and noticed that δG is not affected, i.e., δG ∼ 0.73 in all cases. In contrast, at low energies, for instance at E = 6 meV the fluctuations of the conductance depend on the value of the SOC. Google Scholar
  • 39 A change in the size of the conductance fluctuations from β = 4 to 1 symmetry classes due to the presence of disorder has been reported in quantum wires with strong spin–orbit interaction: T. Kaneko, M. Koshino, and T. Ando, Phys. Rev. B 81, 155310 (2010). 10.1103/PhysRevB.81.155310 CrossrefGoogle Scholar