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A theoretical interpretation is given on the magnetization process of CsCuCl; show-
ing a small jump for the external field applied parallel to the c-axis. It is shown that
quantum fluctuations are so important in this S=1/2 triangular antiferromagnet that
they can change the ground-state spin structure. The observed magnetization jump is
successfully explained as a spin flop process caused by the quantum effect.

§1. Introduction

CsCuCl; is one of the well-known hex-
agonal ABX;-type compounds which has been
extensively investigated.'® It is featured by
the ferromagnetic chains along the c-axis
which form the triangular antiferromagnet in
the c-plane. It undergoes a structural phase
transition at 423 K leading to a helical atomic
displacement along the c-axis. This is attri-
buted to the cooperative Jahn-Teller effect of
Cu?* ion.” The low symmetry of the local
structure leads to the antisymmetric
Dzyaloshinsky-Moriya (D-M) interaction
along the chains. Below Ty=10.5 K, spins lie
on the c-plane with the 120° structure and
form a helical spin structure along the c-axis
with a long period.? The helical structure is ex-
plained by a competition between the fer-
romagnetic intrachain exchange interaction
and the D-M interaction.

In a high field experiment, Motokawa® dis-
covered an unexpected behavior in magnetiza-
tion process of CsCuCl;. When the external
field is applied parallel to the c-axis, the mag-
netization at T=1.1K increases almost lin-
early and shows a small jump at H.=12.5T.
Above H., the magnetization increases again
and saturates at H,;=31 T. According to the
classical mean-field theory, spins should sim-
ply stand up from the c-plane so as to form the
umbrella-like spin structure (Fig. 1(a)), when
the field is applied along the c-axis. The um-
brella closes continuously with increasing

field, and finally shrinks into the ferromag-
netic state. Thus, it is difficult to explain the
observed magnetization jump within the classi-
cal theory.

In most magnetic substances, their spin
structures are well determined within the classi-
cal theory. It is generally believed therefore
that quantum fluctuations do not change the
nature of the ground state of real (three-dimen-
sional) magnets. However there are some ex-
ceptions for frustrated systems. It is known
theoretically that frustrated spin systems often
show non-trivial continuous degeneracy in the
classical ground state. Such a degeneracy is
usually removed by thermal or quantum fluctu-
ations. The triangular antiferromagnet in a
magnetic field,*'? the fcc Heisenberg antifer-
romagnet,'” and a frustrated square-lattice an-
tiferromagnet'? are such examples. However
no real material has been known up to now.

The purpose of the present paper is to show
that CsCuCl; is the first material in which
quantum fluctuations play an important role
in determining the ground state spin structure.
We will show that the unexpected behavior of
the magnetization is a manifestation of quan-
tum fluctuations.

A preliminary account of a part of this
work was reported in ref. 13.

§2. Classical Ground State

Let us write the Hamiltonian of CsCuCl; in
the magnetic field applied parallel to the c-axis
as :
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W=—2JOZ(Sin'Sin+1+'1(S?nan+1+S;¥nS¥n+1))+2-fl > SinSjn

{ij>n

—ZDnn+l'(SinXSin+1)—g,uBHZ S;'zm (1)

where ;, represents a spin (S=1/2) located at the i-th site in the n-th c-plane, and the summa-
tion <ij ) is taken over all nearest-neighbor pairs in the c-plane. The z-axis is taken to be parallel
to the c-axis. The first and second terms are intrachain ferromagnetic exchange interaction and in-
terchain antiferromagnetic exchange interaction, respectively. #(>0) is a weak anisotropic ex-
change interaction of easy-plane type, whose importance has been pointed out by Tanaka et al.”
The third term is the D-M interaction where the D,,+; vector is assumed to be parallel to the c-
axis. The fourth term is the Zeeman energy. The dipole-dipole interaction is considered to be
small and neglected for simplicity.

Although the Hamiltonian (1) looks complicated due to the D-M interaction, we can eliminate
the asymmetric part from the Hamiltonian by rotating the xy-plane by a pitch g along the z-axis
as

{an=S§‘,; cos nqg— S, sin nq,
8%, =87 sin nq+S8% cos ng. V)
The Hamiltonian is then written as

%Z—Z [2*7(')(Si‘tnsfn+l+S¥nS¥n+l)+2JOS?nS§n+l]+2Jl Z Sin'Sjn_g.uBHZ S?m (3)

ijon

- / D\?
J0=J0 (1+”)2+(ﬁ), DEIDfm+l|- ' (4)

We omitted the notation ““ ’ > in (2) for simplicity. The pitch q of the helical structure is deter-
mined so as to eliminate the asymmetric term: tan g=D/2J,(1+7). According to experimental
results,® Jj is estimated as J,=1.012J,. Note that the antisymmetric interaction has been reduced
to a weak anisotropy of easy-plane type.

In the classical ground state the triangular antiferromagnet on each c-plane can be divided into
3 sublattices labeled by 1, 2, 3. The ground state energy is described with the spin of the /-th sub-
lattice S; as

where

E - 2
= 208 (o= IS+ (5D +(597)
1
+2J1(S1-Sz+Sz'S3+S3'S1)—?g,uBH(S‘f+S§+S§), o)

where N represents the total number of spins. It is convenient to express S; with the polar coor-
dinate as

S;=(S cos ¢; sin 6, S sin ¢; sin 6;, S cos 6;) 6)

We shall consider the four types of spin configurations shown in Fig. 1, which are possible candi-
dates for the ground state.
[I] umbrella-type configuration (Fig. 1(a))
This configuration is expected to be the ground-state configuration in the classical theory. Put-
ting 6;=6 and ¢;=2(/—1)n/3, we have the classical energy of this configuration as
E,

~ - —2J08%—37, 82+ {2(Jo— Jo)+9J,} S? cos? §—gus SH cos 6. @)
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Fig. 1. Four types of spin configurations of the triangular antiferromagnet in the magnetic field. (a) The um-
brella-type configuration. The c-plane components of the spins form the 120° structure. (b) The coplanar
configuration for H< H,/3. The spins lie in a plane including the c-axis. (c) The coplanar configuration for
H>H,/3. Two of the three spins are oriented along the same direction. (d) The coplanar configuration,
which is the inversion of the configuration (b).

The angle 6 is determined by the condition dEy/d6=0, which leads to

gusH
(18+44) /1S’

where A =(Jy;—Jo)/ J;. The magnetization is given by M=gus S cos 6. The magnetization shows
a linear increase with the increase of the external field and then it saturates at

(©)

cos =

H=(18+44)J:8/gus. €))
Substituting (8) into (7), we have the minimum energy of this configuration as
E, - 1
W=—(2Jo+3J1)SZ—?guBSHsh2, (10)

where h=H/ H;.
[II] coplanar configurations
To describe the coplanar configurations, we put ¢; =¢,=¢@;=0 and take 6, between — 7 and 7.
We consider three types of coplanar configurations.
(i) 6= and 6,=—0;=0 (Fig. 1(b))
For this configuration, the classical energy is

E - 2 . 1
-]70= —2J0S2+—3- (Jo—J))S*(1+2 cos? 8)+2J,S%(cos 26—2 cos 0)——3—g,uaSH(2 cos 6—1).

an
The angle 0 is determined by minimizing (11), which leads to
(gusH/S)+6J,
= 12
08 0= 4T, (12)

The minimum energy for this configuration is obtained by substituting (12) into (11). Since 4 is
estimated to be =0.07 for CsCuCl;, we expand the energy with respect to 4 as

E, - 1
~= —(2J0+3JI)S2—7guBSHsh2+A Ji(1+h)282+0(4%). 13)

The third term of the above equation is the energy difference from the umbrella configuration.
This term is always positive for 4 >0.
(i) 6,=—0, and 6,=6;=0, (Fig. 1(c))

The classical energy of this configuration is
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E, - 2 .
N —2JOSZ+? (Jo—Jo) S%(cos? 6,12 cos? Oy)

1
+2J:82{1+2cos (6.+6y)} -3 g usSH(cos 0,42 cos by). (14)

From the conditions dE,/36,=0 and dE,/d6,=0, the following two equations are obtained:
{A sin 20,+6 sin (6,+ 6,) —(9+2A4)h sin §,=0,
A sin 26,43 sin (0,1 6v)— (9+24) A sin 6,=0. (15)

For 4 #0, it is difficult to solve (15) for a general case. However, for small A, we can express
cos 6, and cos 6, as an expansion in 4 as

cos 6 =_3_h____1_+A (_liM+O(A2)
Y27 2h 36h* ’
3 1 (1—-hr»H2—-3h? ,
cos 61,—7 h+E—A T-I—O(A ). (16)

Substituting (16) into (14), we obtain the energy of this configuration up to the first order in
terms of 4 as
(1—h?)?
4h*
We find that for positive 4, this energy is higher than that in the umbrella-type.
(iii) 6,=n, 6,=—6;=46 (Fig. 1(d))
The classical energy for this configuration is,

E B 1
—A%= —@Jyt30)8 =~ gus SH:*+ A1, 8? +0(4?). a7

E - 2 1
—N,O—= ~2J0S2+-3— (Jo—Jo) S2(1+2 cos? 8)+2J,5? (cos 26+2 cos 9)~3-g,uBSH(2 cos 0+1).
(18)
The angle 6 is determined from the condition dE,/d6, which leads to
(gus H/S)—6J;
g=————""—" 1
o8 (2+44)J; (19
The minimum energy for this configuration is obtained by substituting (19) into (18) as
Eo 7 2 1 2 2
W= —QRJ+3)S —?gﬂBSHsh2+AJ1(I—h) S2+0(4%). 20)

Although this energy is lower than that of the configuration (b) or (c), it is still higher than the
energy of the umbrella-type.
Actually, all configurations shown above satisfy the relation

gusH
6, ’

for A=0 and they all belong to the class of continuously degenerate ground states.” For 4 >0,
the continuous degeneracy is removed by the easy-plane anisotropy and the umbrella-type
configuration is selected as the ground state. Note that the energy difference between coplanar
and umbrella-type is very small for small 4. Thus we expect that the energy difference can be com-
pensated by the effect of quantum fluctuations, as will be shown explicitly in the next section.

S1+8+83= (21)

§3. Quantum Fluctuations
In this section we take into account the effect of quantum fluctuations by means of the spin-
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wave theory. This gives the first correction to the classical ground state energy in the 1/.S expan-
sion. We evaluate the zero-point energy for the four spin configurations by putting 4 =0, and see
how quantum fluctuations lift the degeneracy of the classical state in the isotropic case.

We take a local coordinate system &, #, ¢ in which the {-axis is taken to be the classical direc-
tion of the spin. The transformation in each sublattice is expressed in terms of the polar coor-
dinate of the classical direction as

8%=—=S8% sin ¢,— ST, cos 6, cos ¢+ S+, sin 6, cos ¢y,
'$%,=8%, cos ¢,— S, cos 6, sin ¢,+ S5, sin 6, sin ¢,
S%,=87 sin 6,+S%, cos 6, (22)
where the angles 6, and ¢, have already been determined for each configuration classically. We in-
troduce three kinds of Holstein-Primakoff bosons a, b, ¢ for the sublattice 1, 2, 3 respectively.

The spin deviation from the classical direction on the 1st sublattice is described then by the bos-
onic operator as

V28 4 o1
> (@intain), Sih=i >

For the other sublattices, the bosonic operators are defined in the same way as in (23). The
Fourier transform of the bosonic operator is defined by

/3 .
ain= |~ >, arexp (ik-ru), 24
N %

where the wave vector k is defined in the Brillouin zone for the sublattice. Substituting these oper-
ators into the Hamiltonian and neglecting terms higher than the third order in bosonic operators
according to the spirit of the 1/S expansion, we obtain a quadratic spin-wave Hamiltonian as

S t
(ain - ain)- (23)

+
Slgn:S—ainains Sxén:

Hosw=Eo— (2. +3J)NS+£Z [(JZ{T o )( B Fi >( o >] ©5)
SwW 0 0 1 2 = ks —k F’ik E’Ek %T—k ’

where 7, is a three-component vector ;= (ax, bx, ¢x), and E; and F; are 3 X 3 matrices. The
matrix elements of £ and F are

E=E»n=E3;=4Jy(1—cos k;)+6J,,
En=E%=3J,{(1+cos 6; cos 8,) cos (¢, —¢)+sin 6, sin 6,
—i(cos 6;+cos 6,) sin (¢1—¢2)} Vi,
Eyn=E3$=3J{(1+cos 0, cos 0s) cos (¢,—¢3)+sin 0, sin 6,
—i(cos B+ cos 05) sin (p2—¢3)} Vi,
E; =E%=3J,{(1+cos 05 cos )) cos (¢3—¢;)+sin 65 sin 6
—i(cos ;+cos 8)) sin (p3— b))} Vi, (26)

Fiu=F»p=F;=0,
Fp=F%=3J,{(1—cos 0, cos 0,) cos (¢, —¢,)—sin 6, sin 0,
—i(cos ;—cos 6) sin (¢1—¢2)} Vi,
1 Fs=F%=3J,{(1—cos 6, cos 63) cos (¢>—¢3)—sin 6§, sin 6;
—i(cos B,—cos 6s) sin (¢2— ¢3)} Vi,
Fy=F%=3J,{(1—cos 0; cos 6;) cos (¢3— ;) —sin G sin §;
—i(cos B3—cos 6)) sin (¢3— d1)} Vi, 27
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where
1 —ke+V3k —k,— 43k
= [exp (iky)+exp {i (—2——y>} +exp {i (—2—y>} } (28)

The Hamiltonian ##sy is diagonalized by a generalized Bogoliubov transformation which results

mn

1
Hsw=Eo—QJ+3J)NS+S D] [wl(k) (alak+——>
k

2

1 1
+w, (k) (ﬁlﬁk+7>+w3(k) (ylyk+—)]. 9)

2

Therefore the first quantum correction to the classical ground state energy for each spin configu-

ration is given by

S
AEsw=—QJ+3J)NS+— > [wi (k) + w2 (k) +ws (k)]
k

as expected.

(30)

For the umbrella-type configuration, the diagonalization of the Hamiltonian can be easily car-
ried out. The spin-wave energy w; (k) is given by

w1 (k)= [4Jo(1—cos k) +6J;(1— A, )] [4Jo (1 —cos k) +6J: {1+ (2—3h*) A1k}]

-6 ﬁflhﬂz,k.

where /11,k= {j("‘)vk+j "(H)v_k}/Z and Uik
={j " Dye—j " Dv_,}/2i with j=e?"/3,

For the coplanar configurations, w;(k) is
given by the solution of

det [(E—F)(E+F)—w?]=0. (32)

Although it is difficult to write the solution in
an explicit form for arbitrary wave vector £,
spin-wave frequencies can be determined
by solving (32) numerically. The spin-wave
frequencies, which were calculated for the um-
brella-type configuration in Fig. 1(a) and
coplanar configuration in Fig. 1(c), are shown
in Fig. 2 for a comparison. Here 4 is taken as
0.5; as evident in the figure, the lowest branch
for the coplanar configuration is always lower
than umbrella-type configuration. This is the
reason why quantum fluctuations stabilize the
coplanar configuration more.

Using these spin-wave frequencies, we have
evaluated the quantum correction for the four
spin configurations. The results are shown in
Fig. 3; we find that quantum fluctuations
favor the coplanar configuration (b) or (c). As
we can see in various theoretical models,!*'?
collinear spin configuration is stabilized the
most by quantum fluctuations.

G

Note that the quantum contribution favor-
ing the coplanar configuration is in contrast
with the classical contribution of A4, which
stabilizes more the umbrella-type configura-
tion. Therefore in the presence of anisotropy,
there must be a competition between the quan-
tum contribution and the classical energy
difference. We have evaluated the total energy

300 T T L T

umbrella-type —-
coplanar ——

K MK H

A r

Fig. 2. Calculated spin-wave spectrum at #=0.5 for
the umbrella-type configuration (a) and the coplanar
configuration (c).
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Fig. 3. The 1/S correction to the ground state energy
for the four spin configurations in Fig. 1. The in-
trachain coupling J, and interchain coupling J; are
chosen as J,=28 K and J,=4.9 K. 4 is assumed to be
0. The dashed line denotes the classical difference of
the energy measured from the umbrella-type configu-
ration.
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Fig. 4. The total ground-state energy for the four spin
configurations, which is the sum of the A-linear classi-
cal energy and the 1/S quantum correction shown in
Fig. 3. Here E is measured from the classical energy
for the umbrella-type configuration.

by adding the classical energy linear in 4 and
the quantum correction proportional to 1/S.
Since 4 is small in CsCuCl;, we take 4=0 in
evaluating the quantum contribution. For the
contribution due to the anisotropy 4, we take
the classical value which has been calculated in
§2. We have used the following values for the
parameters: Jo=28K, Ji;=4.9K, 4=0.07.

Tetsuro NIKUNI and Hiroyuki SHIBA

(Vol. 62,

These values are very close to what Tanaka et
al.” used to interpret ESR data? and they are
consistent with other previous experiments.>>
Figure 4 shows the total ground-state energy
which is measured from the classical energy
for the umbrella-type configuration. For
h<h.=0.36, the energy of the umbrella-like
configuration is clearly lower than the copla-
nar-type configurations. However, the copla-
nar configuration (c) has the lowest energy for
h>h.. Thus we expect the spin structure to
change at &, from the umbrella-like one in Fig.
1(a) to the coplanar type in Fig. 1(c). The
value of A is in a reasonable agreement with
the experimental result, #.=0.4. The magni-
tude of the magnetization jump at H, is esti-
mated in the classical approximation as

(A—ho)
36h

where My=gug S is the saturation magnetiza-
tion. Substituting #.=0.36 and 4=0.07 into
(33), we obtain AM=0.041M,, which should
be compared with the experimental value
AM=0.012M,.9 At present we do not know
whether this discrepancy is serious or not.

At finite temperatures, we must take into ac-
count the effect of thermal fluctuations. We
have evaluated the free energy for each
configuration by taking into account a contri-
bution, which is due to the entropy of thermal
spin-wave excitations. As done in evaluating
the quantum contribution, we take 4=0 in
evaluating the entropy. Namely, the free
energy has been calculated from the following
formula:

AM=M,A (33)

3

S
F=Eo—(2Jo+3J1)NS+7 Z Z COI(k)
1 k

1=

+T23] > In [l—exp {_Sw,(k)”.
=1 "% T
G4

Here we take the Boltzmann constant to be
unity. Figure 5 shows the resulting free energy
for various temperatures. We see that the
coplanar structure (b) or (c) is the most stabi-
lized by thermal fluctuations. Therefore we ex-
pect the critical field H, to decrease with
increasing temperature. It is qualitatively con-
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The free energy for the four spin configura-

Fig. 5.
tions which is measured from the classical ground
state energy for the umbrella-type configuration. (i)
T/2J,8=0 (i) T/2J,8=1.0 (iii) T/2J;8=1.5 (iv)
T/2J;8=2.0.

sistent with the observed phase diagram in
ref. 6.

§4. Summary and Discussion

We have shown that the small jump in mag-
netization of CsCuCl; for the magnetic field
applied parallel to the c-axis is likely to be due
to a quantum-fluctuation-induced phase transi-
tion. The abrupt change of magnetization is ex-
plained as a spin flop transition from the um-
brella-type configuration to the coplanar
configuration, which is caused by the quantum
effect. In the field lower than H., the umbrella-
type structure is stabilized by the easy-plane
anisotropy, while in the field higher than H.
the coplanar configuration is stabilized by
quantum fluctuations. There is a competition
between the easy-plane anisotropy which
favors the umbrella-type configuration and
quantum fluctuations which favors the copla-
nar configuration. In ordinary materials, the
anisotropy energy is dominant over the quan-
tum effect. However, the Cu?* ion in CsCuClj;
has S=1/2 and the anisotropy appears to be
very week; therefore quantum fluctuations can
overcome the anisotropy in this substance. At
finite temperatures, thermal fluctuations favor

Quantum Fluctuations and Magnetic Structures of CsCuCl; 3275

more the coplanar configuration.

Let us comment on a different theoretical in-
terpretation for the anomaly of the magnetiza-
tion. Fedoseeva et al.'*'¥ suggested that the
transition at H. is caused by the dipole-dipole
interaction which leads to an incommensurate
magnetic structure with the long-wave modula-
tion. However, as shown in ref. 16, the dipole-
dipole interaction can cause an incommen-
surate state only near the Néel temperature. It
seems, therefore, that their theory cannot ex-
plain the transition at low temperatures.

Recently an experimental check for our
proposal has been carried out by Professor
Motokawa’s group, who uses the neutron scat-
tering with a combination of pulsed neutron
and pulsed magnetic field.!” Their results up
to 14 T are consistent with the proposed phase
transition. The phase transition at H; has also
been observed clearly by ESR'® and NMR."

In the present calculation, we took 4=0 in
the calculation of the quantum contribution
and used the classical energy difference for the
contribution of 4. In other words, we have
kept only the lowest order in A4 and 1/S. More
improved treatment is desired to take into ac-
count the quantum fluctuations for 4 >0. It is
left for a future study.

Finally we wish to discuss briefly the case of
the external field perpendicular to the c-axis.?®
The observed magnetization curve shows a
small plateau around 12T in this case. We
speculate this plateau corresponds to the col-
linear configuration with one third of the satu-
ration magnetization, which is the most stabi-
lized by quantum fluctuations.!® In this case,
however, the situation is complicated due to
the broken axial symmetry. It has been shown
classically that a continuous phase transition
from the helical (i.e. incommensurate) state to
the commensurate state occurs due to the mag-
netic field. Details of the study on the perpen-
dicular case will be reported elsewhere.?”
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