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Relaxation and decoherence properties of the exactly solvable Coleman-Hepp model are studied
by determining the time evolution of the entropy. With the aid of our previous results, we can
calculate the entropy by solving an eigenvalue problem for the reduced density matrices. Detailed
numerical studies are performed to clarify the decoherence processes.
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§1. Introduction

In 1972, Hepp explicitly formulated a model based
on work by Coleman.1) He discussed the measurement
problem of quantum mechanics. The model is a simple
one-dimensional system composed of an incoming parti-
cle and an array of N spins with S = 1/2, S being the
magnitude of a spin. Subsequently, a generalized version
of the Coleman-Hepp model2, 3) was introduced, which
takes into account the energy exchange effect and allows
arbitrary spin magnitude S.
In previous studies,4-6) we examined the relax-

ation and the decoherence processes of the generalized
Coleman-Hepp model by a method of spin coherent state
representation.7, 8) Thus, for instance, we can clarify the
decoherence process when S becomes large.
It is important to note that the model is one of a few

examples which can be solved exactly to provide details
of the relaxation processes. In contrast with conven-
tional theories of relaxation and decoherence, where the
interaction between the relevant system and a reservoir is
assumed to be weak, with this model we can study relax-
ation behavior even for strong interaction. Namely, we
are able to determine the density matrices, the averages
of observables and the quasi-probability functions.
In this paper, we determine the time evolution of the

quantum mechanical entropy as a measure of decoher-
ence. In particular, the entropy is rigorously calculated
to examine coherence properties of the spin state using
the method of studying spin relaxation processes.9)

§2. Short Summary of the Generalized Coleman-
Hepp Model

The Coleman-Hepp model is composed of a spin one-
half incident particle and an array of N spins {Sl} (l =
1, 2, · · · , N) called a detector. The magnitude of each
detector spin {Sl} is arbitrary. The incident particle
moves into the detector with a constant velocity v and
interacts with the detector spins. The total Hamiltonian
of this model is given by

H = H0 + P+H1, (2.1)
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where

H0 = HI +HD, (2.2)

HI = vP + h̄ωII
z, (2.3)

HD =
N∑
l=1

h̄ωlS
z
l . (2.4)

The quantities vP and h̄ωI are the kinetic energy and the
Zeemann energy, respectively, Iz being the z-component
of the spin, while h̄ωl is the l-th spin energy of the de-
tector.
The interaction HamiltonianH1 is written as follows:

H1 =
1

2

N∑
l=1

h̄Ωl(X − xl)
{
eiωlX/vS−l + e

−iωlX/vS+l

}
,

(2.5)

where X is the position operator of the particle and the
l-th detector spin is located at the position xl.
This model has a characteristic restriction in that the

interaction occurs only when the particle spin is up. This
is explicitly shown by the operator P+ =

1
2 + I

z in the
second term of (2.1).
We are already able to determine the time evolution

of the density matrices starting from the initial density
matrix of the form

W (0) = |Ψ(0)〉〉〈〈Ψ(0)|

= |I〉〈I| ⊗| ψ〉〈ψ| ⊗|{ z0l }〉〈{z
0
l }| , (2.6)

where
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|I〉 = a|+〉+ b|−〉 , |ψ〉 =

∫
dxψ(x)|x〉, (2.7)

and

|{z0l }〉 =
N∏
l=1

|z0l 〉. (2.8)

In these expressions, |I〉 and |ψ〉 designate the spin
state and the orbital state for the incident particle, re-
spectively, and |z0l 〉 indicates the initial spin state for
the detector in the spin coherent state representation,
which is characterized by the vector z0l (the superscript
0 designates the initial state),
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W (t) ≡ e−iHt/h̄W (0)eiHt/h̄ (2.10)

=

∫
dx

∫
dx′ψ(x)ψ∗(x′)|x+ vt〉〈x′ + vt|

⊗{|a|2|+〉〈+| ⊗|{ z0(int)l (x, t)}〉〈{z0(int)l (x′, t)}|+ |b|2|−〉〈−| ⊗|{ z0(non)l }〉〈{z0(non)l }|

+ab∗e−iωIt|+〉〈−| ⊗|{ z0(int)l (x, t)}〉〈{z0(non)l }|+ a∗beiωIt|−〉〈+| ⊗|{ z0(non)l }〉〈{z0(int)l (x′, t)}|}, (2.11)

where

z
0(int)
l (x, t) =

⎛
⎜⎜⎝
(
z0l,+ cos

Θl(x; t)
2

− iz0l,−e
−iωlx/v sin

Θl(x; t)
2

)
e−iωlt/2(

z0l,− cos
Θl(x; t)
2

− iz0l,+e
iωlx/v sin

Θl(x; t)
2

)
eiωlt/2

⎞
⎟⎟⎠ (2.12)

and

z
0(non)
l =

(
z0l,+e

−iωlt/2

z0l,−e
iωlt/2

)
. (2.13)

In the above expression, the quantity Θl(x; t) measures
an effect due to the interaction up to time t:

Θl(x; t) =

∫ t
0

dt′Ωl(x+ vt
′ − xl), (2.14)

Ωl(x) being defined by eq. (2.5).
Moreover, the reduced density matrix for the incident

spin is calculated exactly by eliminating the irrelevant
information:

ρI(t) = |a|
2|+〉〈+|+ |b|2|−〉〈−|

+

∫
dx|ψ(x)|2

{
ab∗e−iωIt

N∏
l=1

(
cos
Θl(x; t)

2

−i sin θ0l cos(φ
0
l − ωlx/v) sin

Θl(x; t)

2

)2Sl
|+〉〈−|

+c.c.} . (2.15)

where Sl is the magnitude of l-th spin in the detector.
Similarly, we have for the detector,

ρD(t)

=

∫
dx|ψ(x)|2 { |a|2|{z0(int)l (x, t)}〉〈{z0(int)l (x, t)}|

+ |b|2|{z0(non)l }〉〈{z0(non)l }| } , (2.16)

and for the l-th spin of the detector,

ρl,D(t) =

∫
dx|ψ(x)|2 { |a|2|z0(int)l (x, t)〉〈z0(int)l (x, t)|

+|b|2|z0(non)l 〉〈z0(non)l | } . (2.17)

Using these results, we can obtain the averages and the
quasi-probability densities for the spin variables. Details
are shown in the previous papers.4-6) Here we quote the
final expressions for the averages:

and

〈Szl (t)〉 = Sl

{
|a|2
∫
dx|ψ(x)|2(cos θ0l cosΘl(x; t)

+ sin θ0l sin(φ
0
l − ωlx/v) sinΘl(x; t))

+|b|2 cos θ0l

}
. (2.21)

These will be used in the subsequent sections.

§3. Time Evolution of Entropy

The purpose of this paper is to determine the entropy
associated with the Coleman-Hepp model and to study
the dynamics causing the decoherence.
We first note that the entropy of the quantum system

is defined by

S = −kBTrρ ln ρ, (3.1)

where ρ is the density matrix and kB, the Boltzmann
constant. To treat the spin 1/2 system, we consider the

〈I−(t)〉 = ab∗e−iωIt
∫
dx|ψ(x)|2

N∏
l=1

[
cos
Θl(x; t)

2

−i sin θ0l cos(φ
0
l − ωlx/v) sin

Θl(x; t)

2

]2Sl
,

(2.18)

〈Iz(t)〉 =
1

2

(
|a|2 −| b|2

)
, (2.19)

〈S−l (t)〉 = Sle
−iωlt

{∫
dx|ψ(x)|2

×|a|2
[(
e−iφ

0
l cos2

Θl(x; t)

2

+ ei(φ
0
l−2ωlx/v) sin2

Θl(x; t)

2

)
sin θ0l

+ie−iωlx/v sinΘl(x; t) cos θ
0
l

]
+ |b|2e−iφ

0
l sin θ0l

}
, (2.20)

z0l =

(
z0l,+
z0l,−

)
= z0l

(
e−iφ

0
l cos(θ0l /2)

eiφ
0
l sin(θ0l /2)

)
, (2.9)

where z0l , θ
0
l and φ

0
l are a complex number, polar angle

and azimuthal angle, respectively.
Thus, the time evolution of the density matrix is de-

termined to be
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eigenvalue problem of ρ:

ρ|pj〉 = pj |pj〉. (3.2)

The eigenvalues are solved to give

pj =
1

2
± r (3.3)

and thus the entropy S can be written as

S = −kB

{(
1

2
+ r

)
ln

(
1

2
+ r

)

+

(
1

2
− r

)
ln

(
1

2
− r

)}
, (3.4)

where

r =
√
〈Ix(t)〉2 + 〈Iy(t)〉2 + 〈Iz(t)〉2, (3.5)

for the particle spin. Then, the corresponding entropy
for the l-th detector spin is obtained simply by replacing
I by Sl in (3.5) when Sl = 1/2.
As mentioned above, the averages of the Coleman-

Hepp model are already known, and therefore we can
apply this formulation directly to the particle spin and
the detector spin under the assumption that:
(i) In the initial state, a particle is located around
x = 0 with the width Δ, whose spin is along the x-axis,
(ii) All the detector spins have the same magnitude

and form a line along the z-axis with the same interval
d.
(iii) The quantity Ωl(x− xl) localized around xl with

the width δ, explicitly, is given by

Ωl(x− xl) =
Ωl · d√
2πδ2

e−(x−xl)
2/2δ2 . (3.6)

(iv) It is assumed that δ � Δ, giving |ψ(x)|2 = δ(x).
These assumptions yield the following:

〈I−(t)〉 =
1

2
e−iωIt

N∏
l=1

[
cos
Θl(vt)

2

]2Sl
, (3.7)

〈Iz(t)〉 = 0, (3.8)

and

〈S−l (t)〉 = −
i

2
Sle
−iωlt sinΘl(vt), (3.9)

and

〈Szl (t)〉 = −
1

2
Sl (cosΘl(vt) + 1) , (3.10)

where

Θl(x) =
1

v

∫ x
−∞
dx′Ωl(x

′ − xl). (3.11)

Therefore the time evolution of the entropy for the
particle spin and the detector spins can be determined
easily by substituting these expressions into eqs. (3.4)
and (3.5) to the extent that we treat only the magnitude
1/2 spins. When the magnitude of the spin is arbitrary,
we need to generalize the treatment; this will be done in
a forthcoming paper.

§4. Numerical Studies and Concluding Remarks

We can use the entropy as a measure of disorder on the

spin state. In the spin 1/2 system, S/kB ranges between
0 and ln 2, which correspond to the pure state and the
randomized state, respectively. On these grounds, we
reveal several consequences derived from (3.7)–(3.10). In
Fig. 1 we show the time evolution of the entropy for the
particle spin with the parameter Ωld/v = 5 and N = 10.
At t = 0, S/kB has the value 0 and after passing through
the detector (i.e., after t̂(≡ vt/d) = 10), S/kB becomes
almost ln 2. The oscillation occurs in the detector, due
to the strong interaction.
Next we treat somewhat different situations in Figs. 2

and 3. It is already shown that the decoherence (dephas-
ing) phenomena occur when the parameters Sl and/or N
become very large. Among others, the dephasing phe-
nomena were observed even for N = 1 when Sl is large.
This case is treated in Figs. 2 and 3. In Fig. 2, we see
that the entropy increases when the inter-
action is weak (Ωld/v = 1). However, as Ωld/v increases,
the entropy oscillates and approaches a constant value.
The stronger the interaction, the more oscillations ap-
pear. In Fig. 3, the two different cases, Sl = 1/2 and
Sl = 20, are treated when Ωld/v = 8. They behave
essentially the same. However, with increasing Sl, the
entropy change becomes very sharp and the final value

monotonically

Fig. 2. Time evolution of S/kB for the particle as a function
of t̂ by changing Ωld/v for N = δ/d = .25 and Sl = /2. The
thin solid, broken, and thick solid lines correspond to Ωld/v =
8, and 12, respectively.

spin
1, 0 1

1,

Fig. 1. Time evolution of the entropy, S/kB, for the particle
as a function of t̂ ≡ vt/d for the parameters Ωld/v = N =

δ/d = .25 and Sl = /2.0 1

spin
10,5,
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Fig. 4. Time evolution of S/kB for the first detector spin as a
function t̂ by changing Ωld/v for parameters δ/d = .25, S1 =
1/2. The thin solid, broken, and thick solid lines correspond to
Ωld/v = 5, and 10, respectively.

of

1,

0
Fig. 3. Time evolution of S/kB for the particle as a function
of t̂ by changing Sl for N = 1, δ/d = 0.25 and Ωld/v = 8. The
solid and broken lines correspond to Sl = 20 and Sl = 1/2,
respectively.

spin

detector. Further details will be reported elsewhere in
relation to the Wehrl10)-Lieb11) entropy.
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of S/kB approaches ln 2. Further increase in Sl results
in vanishing of the oscillation. Thus, we find that the
interaction strength Ωld/v and the apparatus parame-
ter Sl play different roles in the decoherence (dephasing)
processes.
We show in Fig. 4 the time evolution of the entropy

for the first detector spin (l = 1). When the interaction
strength Ωl is changed (Ωld/v = 1, 5, 10), the result-
ing behavior is similar to that found in Fig. 2. Finally,
we discuss the total entropy of the detector. Each con-
stituent spin in the detector results in the same behavior
as in Fig. 4. The total entropy is obtained as a sum of the
individual entropies. We may be observing several typi-
cal behaviors: one an oscillating increase and the other
a stepwise increase in entropy as a function of time.
In conclusion, we were able to exactly obtain the quan-

tum mechanical entropy of the generalized Coleman-
Hepp model. Namely, we could explicitly calculate the
entropy of spin freedom for the incident particle and the
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