J. Phys. Soc. Jpn. 65, pp. 1920-1923 (1996) [4 Pages]
LETTERS

Peculiar Localized State at Zigzag Graphite Edge

+ Affiliations
1Institute of Materials Science, University of Tsukuba, Tsukuba 3052Institute for Solid State Physics, University of Tokyo, Roppongi, Tokyo 106

We study the electronic states of graphite ribbons with edges of two typical shapes, armchair and zigzag, by performing tight binding band calculations, and find that the graphite ribbons show striking contrast in the electronic states depending on the edge shape. In particular, a zigzag ribbon shows a remarkably sharp peak of density of states at the Fermi level, which does not originate from infinite graphite. We find that the singular electronic states arise from the partly flat bands at the Fermi level, whose wave functions are mainly localized on the zigzag edge. We reveal the puzzle for the emergence of the peculiar edge state by deriving the analytic form in the case of semi-infinite graphite with a zigzag edge. Applying the Hubbard model within the mean-field approximation, we discuss the possible magnetic structure in nanometer-scale micrographite.

©1996 The Physical Society of Japan

References

  • 1 H.Kroto, J. R.Heath, S. C.O'Brien, R. F.Curl and R. E.Smalley:Nature 318 (1985) 162. CrossrefGoogle Scholar
  • 2 S.Iijima:Nature 354 (1991) 56. CrossrefGoogle Scholar
  • 3 D.Ugarte:Nature 359 (1992) 707. CrossrefGoogle Scholar
  • 4 X. B.Zhang, X. F.Zhang, D. B.Bernaert, G.Van Tendeloo, S.Amelinckx, J.Van Landuty, V.Ivanov, J. B.Nagy, Ph.Lambin and A. A.Lucas: Europhys. Lett. 27 (1994) 141. CrossrefGoogle Scholar
  • 5 C. H.Kiang, W. A.GoddardIII, R.Beyers, J. R.Salem and D. S.Bethune:J. Phys. Chem. 98 (1994) 6612. CrossrefGoogle Scholar
  • 6 O.Zhou, R. M.Fleming, D. W.Murphy, R. C.Haddon, A. P.Ramirez and S. H.Glarum:Science 263 (1994) 1744. CrossrefGoogle Scholar
  • 7 S.Amelinckx, D.Bernaerts, X. B.Zhang, G.Van Tendeloo and J.Van Landuyt:Science 267 (1995) 1334. CrossrefGoogle Scholar
  • 8 S. E.Stein and R. L.Brown:J. Am. Chem. Soc. 109 (1987) 3721. CrossrefGoogle Scholar
  • 9 H.Hosoya, Y. D.Gao, K.Nakada and M.Ohuchi:New Functionality Materials, ed. T.Tsuruta, M.Doyama and M.Seno (Elsevier, 1993)C 27. Google Scholar
  • 10 K.Tanaka, S.Yamashita, H.Yamabe and T.Yamabe:Synth. Met. 17 (1987) 143. CrossrefGoogle Scholar
  • 11 D. J.Klein:Chem. Phys. Lett. 217 (1994) 261. CrossrefGoogle Scholar
  • 12 K.Kobayashi:Phys. Rev. B 48 (1993) 1757. CrossrefGoogle Scholar
  • 13 M.Fujita, M.Yoshida and K.Nakada: Fullerene Sci. Technol. 4 (1996); in press. CrossrefGoogle Scholar
  • 14 S.Gopalan, T. M.Rice and M.Sigrist:Phys. Rev. B 49 (1994) 8901 CrossrefGoogle Scholar
  • 15 M.Fabrizio, A.Parola and E.Tosatti:Phys. Rev. B 46 (1992) 3159. CrossrefGoogle Scholar
  • 16 E. H.Lieb:Phys. Rev. Lett. 62 (1989) 1201[Errata:68(1989) 1927] . CrossrefGoogle Scholar
  • 17 A.Nakayama, K.Suzuki, T.Enoki, S. L.di Vittorio, M. S.Dresselhaus, K.Koga, M.Endo and N.Shindo: Synth. Met. 55-57 (1993) 3736. Google Scholar