J. Phys. Soc. Jpn. 70, pp. 3251-3254 (2001) [4 Pages]
FULL PAPERS

Diffusion-Limited Aggregation on Nonuniform Substrates

+ Affiliations
1Department of Physics, Wuhan University, Wuhan 430072, P. R. China

Diffusion-limited aggregation (DLA) on nonuniform substrates was investigated by computer simulations. The nonuniform substrates are represented by Leath percolations with the occupied probability p . p stands for the degree of nonuniformity and takes values in the range p c p ≤1, where p c is the threshold of percolation. The DLA cluster grows up on the Leath percolation substrate. The patterns of the DLA clusters appear asymmetrical and nonuniform, and the branches are relatively few for the case that p is close to p c . In addition, the pattern depends on the shape of substrate. As p increases from p c to 1, cluster changes to pure DLA gradually. Correspondingly, the fractal dimension increases from 1.46 to 1.68. Furthermore, the random walks on Leath percolations through the range p c p ≤1 were examined. Our simulations show the Honda–Toyoki–Matsushita relation is still reasonable for DLA growth in fractional dimensional spaces.

©2001 The Physical Society of Japan

References

  • 1 A.-L.Barabasi and H. E.Stanley:Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995). CrossrefGoogle Scholar
  • 2 P.Meakin:Fractals, Scaling and Growth Far From Equilibrium (Cambridge University Press, Cambridge, 1998). Google Scholar
  • 3 Fractals and Disordered Systems, ed. A.Bunde and S.Havlin (Springer, Berlin, 1991) and the references therein. CrossrefGoogle Scholar
  • 4 T. A.Witten and L. M.Sander:Phys. Rev. Lett. 47 (1981) 1400; P.Meakin:Phys. Rev. A 27 (1983) 1495. CrossrefGoogle Scholar
  • 5 T.Vicsek:Fractal Growth Phenomena (World Scientific, Singapore, 1992). CrossrefGoogle Scholar
  • 6 Z.-J.Tan, X.-W.Zou, W.-B.Zhang and Z.-Z.Jin:Phys. Rev. E 60 (1999) 6202;Phys. Lett. A 268 (2000) 112;; Phys. Lett. A 282 (2001) 121. CrossrefGoogle Scholar
  • 7 E.Somfai, L. M.Sander and R. C.Ball:Phys. Rev. Lett. 83 (1999) 5523; F.Mallanmace, L.Monsu'Scolaro, A.Romeo and N.Micali:: Phys. Rev. Lett. 82 (1999) 3480. CrossrefGoogle Scholar
  • 8 T.Nagatani and F.Sagues:Phys. Rev. A 43 (1991) 2970; H.Honjo and S.Ohta:Phys. Rev. E 57 (1998) 6202; V. A.Bogoyavlenskiy and N. A.Chernova:: Phys. Rev. E 61 (2000) 5422. CrossrefGoogle Scholar
  • 9 P.Meakin:Phys. Rev. Lett. 51 (1983) 1119; M.Kolb, R.Botet and R.Jullien:: Phys. Rev. Lett. 51 (1983) 1123. CrossrefGoogle Scholar
  • 10 Z.-J.Tan, X.-W.Zou, W.-B.Zhang and Z.-Z.Jin:Phys. Rev. E 62 (2000) 734. CrossrefGoogle Scholar
  • 11 H. J.Herrmann:Phys. Rep. 136 (1986) 153. CrossrefGoogle Scholar
  • 12 H. A.Makse, J. S.Andrade and H. E.Stanley:Phys. Rev. E 61 (2000) 583. CrossrefGoogle Scholar
  • 13 M. A.Knackstedt, M.Sahimi and A. P.Sheppard:Phys. Rev. E 61 (2000) 4920. CrossrefGoogle Scholar
  • 14 K. S.Mendelson:Phys. Rev. E 61 (2000) 2432;; Phys. Rev. E 60 (1999) 6496. CrossrefGoogle Scholar
  • 15 M.Murat and A.Aharony:Phys. Rev. Lett. 57 (1986) 1875. CrossrefGoogle Scholar
  • 16 P.Jensen:Rev. Mod. Phys. 71 (1999) 1695. CrossrefGoogle Scholar
  • 17 A.Ordemann, M.Porto, H. E.Roman and S.Havlin:Phys. Rev. E 63 (2001) 020104. CrossrefGoogle Scholar
  • 18 P. L.Leath:Phys. Rev. B 14 (1976) 5046. CrossrefGoogle Scholar
  • 19 Z.-J.Tan, X.-W.Zou and Z.-Z.Jin:Phys. Rev. E 62 (2000) 8409. CrossrefGoogle Scholar
  • 20 M.Tokuyama and K.Kawasaki:Phys. Lett. A 100 (1984) 337. CrossrefGoogle Scholar
  • 21 M.Muthukumar:Phys. Rev. Lett. 50 (1983) 839. CrossrefGoogle Scholar
  • 22 K.Honda, H.Toyoki and M.Matsushita:J. Phys. Soc. Jpn. 55 (1986) L707. LinkGoogle Scholar
  • 23 M.Eden:Proc. Berkeley Symp. Mathematical Statistics and Probability, ed. J.Neyman (University of California Press, Berkeley, 1961) pp. 223–239, see also in refs. [rf1,rf2,rf3]. Google Scholar
  • 24 Z.-J.Tan, X.-W.Zou, W.Zhang and Z.-Z.Jin: to be published. Google Scholar