J. Phys. Soc. Jpn. 71, pp. 1840-1843 (2002) [4 Pages]
LETTERS

Direct Evidence of the Anisotropic Structure of Vortices Interacting with Columnar Defects in High-Temperature Superconductors through the Analysis of Lorentz Images

+ Affiliations
1Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-03952Hitachi Instruments Service Co., Ltd., 4-28-8 Yotsuya, Shinjuku-ku, Tokyo 160-00043Department of Physics, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152-85514Department of Physics and Istituto Nazionale per la Fisica della Materia, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna, Italy5Department of Applied Chemistry, University of Tokyo, Tokyo 113-86566Department of Advanced Materials Science, School of Frontier Sciences, University of Tokyo, Tokyo 113-00337Department of Material Science, Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-11958SORST, Japan Science and Technology Corporation (JST), Nihonbashi, Chuo-ku, Tokyo 103-0027

Two types of Fresnel contrasts of superconducting vortices in a Lorentz micrograph, corresponding to pinned and unpinned vortices, were obtained by a newly developed 1 MV field-emission transmission electron microscope on a Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thin specimen containing tilted linear columnar defects introduced by heavy ion irradiation. The main features of the Fresnel contrasts could be consistently interpreted by assuming that the vortices are pinned along the tilted columnar defects and by using a layered or an anisotropic model to calculate the phase shift of the electron wave. The confirmed validity of both models strongly indicates that superconducting vortices in high-critical temperature (high- T c ) layered materials have an anisotropic structure.

©2002 The Physical Society of Japan

References

  • 1 G. W.Crabtree and D. R.Nelson: Phys. Today 50 (April, 1997) 38. CrossrefGoogle Scholar
  • 2 L.Civale, A. D.Marwick, T. K.Worthington, M. A.Kirk, J. R.Thompson, L.Krusin-Elbaum, Y.Sun, J. R.Clem and F.Holtzberg:Phys. Rev. Lett. 67 (1991) 648. CrossrefGoogle Scholar
  • 3 S.Behler, S. H.Pan, P.Jess, A.Baratoff, H.-J.Guntherodt, F.Levy, G.Wirth and J.Wiesner:Phys. Rev. Lett. 72 (1994) 1750. CrossrefGoogle Scholar
  • 4 H.Dai, S.Yoon, J.Liu, R. C.Budhani and C. M.Lieber:Science 265 (1994) 1552. CrossrefGoogle Scholar
  • 5 V.Hardy, A.Wahl, S.Hebert, A.Ruyter, J.Provost, D.Groult and Ch.Simon:Phys. Rev. B 54 (1996) 656. CrossrefGoogle Scholar
  • 6 T.Hanaguri, Y.Tsuchiya, S.Sakamoto and A.Maeda:Phys. Rev. Lett. 78 (1997) 3177. CrossrefGoogle Scholar
  • 7 Z.Yao, S.Yoon, H.Dai, S.Fan and C. M.Lieber:Nature 371 (1994) 777. CrossrefGoogle Scholar
  • 8 K.Harada, T.Matsuda, J. E.Bonevich, M.Igarashi, S.Kondo, G.Pozzi, U.Kawabe and A.Tonomura:Nature 360 (1992) 51. CrossrefGoogle Scholar
  • 9 K.Harada, H.Kasai, O.Kamimura, T.Matsuda, A.Tonomura, S.Okayasu and Y.Kazumata:Phys. Rev. B 53 (1996) 9400. CrossrefGoogle Scholar
  • 10 A.Tonomura:Electron Holography (Springer, Heidelberg, 1999) 2nd ed. CrossrefGoogle Scholar
  • 11 T.Kawasaki, T.Yoshida, T.Matsuda, N.Osakabe, A.Tonomura, I.Matsui and K.Kitazawa:Appl. Phys. Lett. 76 (2000) 1342. CrossrefGoogle Scholar
  • 12 A.Tonomura, H.Kasai, O.Kamimura, T.Matsuda, K.Harada, Y.Nakayama, J.Shimoyama, K.Kishio, T.Hanaguri, K.Kitazawa, M.Sasase and S.Okayasu:Nature 412 (2001) 620. CrossrefGoogle Scholar
  • 13 J. E.Bonevich, K.Harada, H.Kasai, T.Matsuda, T.Yoshida, G.Pozzi and A.Tonomura:Phys. Rev. B 49 (1994) 6800. CrossrefGoogle Scholar
  • 14 S.Fanesi, G.Pozzi, J. E.Bonevich, O.Kamimura, H.Kasai, K.Harada, T.Matsuda and A.Tonomura:Phys. Rev. B 59 (1999) 1426. CrossrefGoogle Scholar
  • 15 R.Patti and G.Pozzi: Ultramicroscopy 77 (1999) 163. CrossrefGoogle Scholar
  • 16 M.Beleggia and G.Pozzi: Ultramicroscopy 84 (2000) 171. CrossrefGoogle Scholar
  • 17 M.Beleggia and G.Pozzi:Phys. Rev. B 63 (2001) 54507. CrossrefGoogle Scholar
  • 18 M.Tinkham:Introduction to Superconductivity (McGraw-Hill, New York, 1996) 2nd ed. Google Scholar