J. Phys. Soc. Jpn. 74, pp. 1014-1019 (2005) [6 Pages]
FULL PAPERS

Superconductivity in a New Pseudo-Binary Li2B(Pd1-xPtx)3 (x=0–1) Boride System

+ Affiliations
1Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-85772National Institute of Materials Physics, Bucharest, POBox MG-7, RO-76900, Romania

Recently we have found superconductivity in a cubic antiperovskite-like compound Li 2 BPd 3 . A new pseudo-binary complete solid solution Li 2 B(Pd 1- x Pt x ) 3 , x =0–1 with similar structure has been synthesized and observation of superconductivity in the entire x -range is reported. Our results strongly suggest that superconductivity is of bulk type. Critical temperature T c is decreasing approximately linearly with amount ( x ) of Pt from 7.2–8 K for Li 2 BPd 3 to 2.2–2.8 K for Li 2 BPt 3 . From isothermal magnetization ( M H ) measurements, lower critical fields H c1 (138 Oe/ x =0 , 38 Oe/ x =1 ), upper critical fields H c2 WHH (3.4 T/ x =0 , 1 T/ x =1 ), coherence length ξ(0) (9.8 nm/ x =0 , 17.9 nm/ x =1 ) and penetration depth λ(0) (190 nm/ x =0 , 364 nm x =1 ) were estimated and shown to follow approximately linear dependencies with x , either. Structure and superconducting similarities with MgCNi 3 , viewed as a bridge between low and high T c superconductors are increasing the expectations that Li 2 B(Pd 1- x Pt x ) 3 , x =0–1 superconductor can be included in the same class of `intermediate' superconductors. For x =0–1 a weak fish-tail effect was observed at low and intermediate fields. Apart from this effect, some samples for x =1 have shown magnetization jumps at fields close to H c2 .

©2005 The Physical Society of Japan

References

  • 1 T.He, Q.Huang, A. P.Ramirez, Y.Wang, K. A.Regan, N.Rogado, M. A.Hayward, M. K.Haas, J. S.Slusky, K.Inumara, H. W.Zandbergen, N. P.Ong and R. J.Cava:Nature 411 (2001) 54. CrossrefGoogle Scholar
  • 2 K.Togano, P.Badica, Y.Nakamori, S.Orimo, H.Takeya and K.Hirata:Phys. Rev. Lett. 93 (2004) 247004. CrossrefGoogle Scholar
  • 3 U.Eibenstein and W.Jung:J. Solid State Chem. 133 (1997) 21. CrossrefGoogle Scholar
  • 4 M.Sardar and D.Sa:Physica C 411 (2004) 120. CrossrefGoogle Scholar
  • 5 R. J.Cava, H. W.Zandbergen, B.Batlogg, H.Eisaki, H.Takagi, J. J.Krajewski, W. F.Peck, Jr., E. M.Gyorgy and S.Uchida:Nature 372 (1994) 245. CrossrefGoogle Scholar
  • 6 Y.Takano, H.Takeya, H.Fujii, H.Kumakura, T.Hatano, K.Togano, H.Kito and H.Ihara:Appl. Phys. Lett. 78 (2001) 2914. CrossrefGoogle Scholar
  • 7 H.Takagi, R. J.Cava, H.Eisaki, J. O.Lee, K.Mizuhashi, B.Batlogg, S.Uchida, J. J.Krajewski and W. F.Peck, Jr.:Physica C 228 (1994) 389. CrossrefGoogle Scholar
  • 8 N.Werthamer, E.Hefland and P. C.Hohenberg:Phys. Rev. 147 (1966) 295. CrossrefGoogle Scholar
  • 9 D. C.Larbalestier, L. D.Cooley, M. O.Rikel, A. A.Polyanskii, J.Jiang, S.Patnaik, S. Y.Cai, D. M.Feldmann, A.Gurevich, A. A.Squitieri, M. T.Naus, C. B.Eom, E. E.Hellstrom, R. J.Cava, K. A.Regan, N.Rogado, M. A.Hayward, T.He, J. S.Slusky, P.Khalifah, K.Inumaru and M.Haas:Nature 410 (2001) 186. CrossrefGoogle Scholar
  • 10 C.Buzea and T.Yamashita:Supercond. Sci. Technol. 14 (2001) R115. CrossrefGoogle Scholar
  • 11 S. Y.Li, R.Fan, X,H.Chen, C. H.Wang, W. Q.Mo, K. Q.Ruan, Y. M.Xiong, X. G.Luo, H. T.Zhang, L.Li, Z.Sun and L. Z.Cao:Phys. Rev. B 64 (2001) 132505. CrossrefGoogle Scholar
  • 12 Z. Q.Mao, M. M.Rosario, K. D.Nelson, K.Wu, I. G.Deac, P.Schiffer, Y.Liu, T.He, A.Regan and R. J.Cava:Phys. Rev. B 67 (2003) 094502. CrossrefGoogle Scholar
  • 13 A.Kawano, Y.Mizuta, H.Takagiwa, T.Muranaka and J.Akimitsu:J. Phys. Soc. Jpn. 72 (2003) 1724. LinkGoogle Scholar
  • 14 K.Kadowaki and K.Kimura: Adv. Supercond. 10 (1998) 107. CrossrefGoogle Scholar
  • 15 A. I.Rykov and S.Tajima: Adv. Supercond. 10 (1998) 83. CrossrefGoogle Scholar
  • 16 D. P.Young, M.Moldovan and P. W.Adams:Phys. Rev. B 70 (2004) 064508. CrossrefGoogle Scholar
  • 17 R.Prozorov, A.Snezhko, T.He and R. J.Cava:Phys. Rev. B 68 (2003) 180502. CrossrefGoogle Scholar