Subscriber access provided by Massachusetts Institute of Technology
J. Phys. Soc. Jpn. 74, pp. 2510-2516 (2005) [7 Pages]
FULL PAPERS

Group-Theoretical Calculation of the Diffusion Coefficient via the Vacancy-Assisted Mechanism

+ Affiliations
1School of Fundamental Science and Technology, Keio University, Yokohama 223-8522

Lower vacancy-density in a crystalline solid slows down the tracer diffusion via the vacancy-assisted mechanism, which can be modeled by means of particles hopping to their respective nearest-neighbor lattice-sites stochastically with double occupancy prohibited. The explicit expressions of the diffusion coefficient were previously obtained for various lattices in terms of Nakazato and Kitahara's method [Prog. Theor. Phys. 64 (1980) 2261]. This method yields a set of linear simultaneous algebraic equations as many as the number of lattice sites, which is reduced to a simple equation with respect to the diffusion coefficient in the final step of the method. We here give a systematic way of the reduction in terms of the group theory.

©2005 The Physical Society of Japan

References

  • 1 H.Bracht: MRS Bull. 25 (2000) 18. CrossrefGoogle Scholar
  • 2 H.Bracht, S. P.Niclols, W.Walukiewicz, J. P.Silveira, F.Briones and E. E.Haller:Nature 408 (2000) 69. CrossrefGoogle Scholar
  • 3 H. D.Fuchs, W.Walukiewicz, E. E.Haller, W.Dondl, R.Schorer, G.Abstreiter, A. I.Rudnev, A. V.Tikhomirov and V. I.Ozhogin:Phys. Rev. B 51 (1995) 16817. CrossrefGoogle Scholar
  • 4 H.Bracht and E. E.Haller:Phys. Rev. Lett. 85 (2000) 4835; A.Ural, P. B.Griffin and J. D.Plummer:Phys. Rev. Lett. 85 (2000) 4836. CrossrefGoogle Scholar
  • 5 J.Bardeen and C.Herring: inImperfections in Nearly Perfect Crystals, ed. W.Shockley (John Wiley & Sons, New York, 1952) p. 261. Google Scholar
  • 6 R. E.Howard:Phys. Rev. 144 (1966) 650. CrossrefGoogle Scholar
  • 7 S.Ishioka and M.Koiwa: Philos. Mag. A 41 (1980) 385. CrossrefGoogle Scholar
  • 8 K.Compaan and Y.Haven: Trans. Faraday Soc. 52 (1956) 786; K.Compaan and Y.Haven: Trans. Faraday Soc. 54 (1958) 1498. CrossrefGoogle Scholar
  • 9 M.Koiwa and S.Ishioka: J. Stat. Phys. 30 (1983) 477. CrossrefGoogle Scholar
  • 10 K.Nakazato and K.Kitahara:Prog. Theor. Phys. 64 (1980) 2261. CrossrefGoogle Scholar
  • 11 K.Nakazato and K.Kitahara:Point Defects and Defect Interactions in Metals (Univ. of Tokyo Press, Tokyo, 1982) p. 586. Google Scholar
  • 12 Y.Suzuki, K.Kitahara, Y.Fujitani and S.Kinouchi:J. Phys. Soc. Jpn. 71 (2002) 2936. LinkGoogle Scholar
  • 13 T.Inui, Y.Tanabe and Y.Onodera:Oyo Gunron (Group Theory and Its Applications in Physics) (Shokabo, Tokyo, 1996) p. 116[in Japanese]. Google Scholar
  • 14 S. K.Kim:Group Theoretical Methods (Cambridge University Press, Cambridge, 1999) p. 141. Google Scholar
  • 15 C. A.Sholl:J. Phys. C 14 (1981) 2723. CrossrefGoogle Scholar