- Full text:
- PDF (eReader) / PDF (Download) (124 kB)
We propose the use of quantized Berry phases as a local topological order parameter of a gapped quantum liquid in any dimension that is invariant under some antiunitary operation. The Berry connection is constructed by the response of the quantum manybody state to a local perturbation. Due to the anti-unitary invariance, the Berry phases are quantized as 0 or π unless the energy gap closes by the local perturbation. Nontrivial characterizations are demonstrated for ground states of frustrated Heisenberg models and manybody ground states of half-filled random-hopping models. The local topological-order parameters in the models provide quantized texture patterns of local singlet pairs and fermionic local covalent bonds. The Haldane phase of the spin 1 chain is also characterized by the uniform π Berry phases.
References
- 1 R. B.Laughlin:Phys. Rev. Lett. 80 (1998) 5188. Crossref, Google Scholar
- 2 P. W.Anderson: Science 235 (1987) 1196 Crossref, Google Scholar
- 3 S.Sachdev:Quantum Phase Transition (Cambridge University Press, Cambridge, 1999). Crossref, Google Scholar
- 4 N.Read and S.Sachdev:Phys. Rev. Lett. 62 (1989) 1694. Crossref, Google Scholar
- 5 N.Read and S.Sachdev:Phys. Rev. Lett. 66 (1991) 1773. Crossref, Google Scholar
- 6 F. D. M.Haldane:Phys. Lett. A 93 (1983) 464. Crossref, Google Scholar
- 7 I.Affleck, T.Kennedy, E. H.Lieb and H.Tasaki:Phys. Rev. Lett. 59 (1987) 799. Crossref, Google Scholar
- 8 H.Tsunetsugu, Y.Hatsugai, K.Ueda and M.Sigrist:Phys. Rev. B 46 (1992) 3175. Crossref, Google Scholar
- 9 D. S.Rokhsar and S. A.Kivelson:Phys. Rev. Lett. 61 (1988) 2376. Crossref, Google Scholar
- 10 R.Moessner and S. L.Sondhi:Phys. Rev. Lett. 86 (1989) 1881. Crossref, Google Scholar
- 11 X. G.Wen:Phys. Rev. Lett. 90 (2003) 016803. Crossref, Google Scholar
- 12 A.Heeger, S. A.Kivelson, J. R.Schrieffer and W. P.Su:Rev. Mod. Phys. 60 (1988) 781. Crossref, Google Scholar
- 13 S.Ryu and Y.Hatsugai:Phys. Rev. Lett. 89 (2002) 077002. Crossref, Google Scholar
- 14 X. G.Wen:Phys. Rev. B 40 (1989) 7387. Crossref, Google Scholar
- 15 Y.Hatsugai:J. Phys. Soc. Jpn. 73 (2004) 2604. Link, Google Scholar
- 16 Y.Hatsugai:J. Phys. Soc. Jpn. 74 (2005) 1374. Link, Google Scholar
- 17 S.Ryu and Y.Hatsugai:Phys. Rev. B 73 (2006) 245115. Crossref, Google Scholar
- 18 M. V.Berry: Proc. R. Soc. A 392 (1984) 45. Crossref, Google Scholar
- 19 A generic description of the non Abelian Berry connection is also possible: (cond-mat/0603230v1). We present the Abelian case here for simplicity. Google Scholar
- 20 A quantum critical point where the bulk gap vanishes can be also characterized using the present quantized Berry phases as a transition point of the Berry phase texture pattern. Google Scholar
- 21 F.Wilczek and A.Zee:Phys. Rev. Lett. 52 (1984) 2111. Crossref, Google Scholar
- 22 Y.Hatsugai:Phys. Rev. Lett. 71 (1993) 3697. Crossref, Google Scholar
- 23 T.Kennedy:J. Phys.: Condens. Matter 2 (1990) 5737. Crossref, Google Scholar
- 24 M.Hagiwara, K.Katsumata, I.Affleck, B. I.Halperion and J. P.Renard:Phys. Rev. Lett. 65 (1990) 3181. Crossref, Google Scholar
- 25 T.Fukui, Y.Hatsugai and H.Suzuki:J. Phys. Soc. Jpn. 74 (2005) 1674. Link, Google Scholar
- 26 Y.Hatsugai, T.Fukui and H.Suzuki:Physica E 34 (2006) 336. Crossref, Google Scholar
- 27 Y.Hatsugai: to be published. Google Scholar
- 28 <GM∣ d GM>= <{ϕ} ∣ ∑ℓ …(c†ϕℓ-1)(c† dϕℓ)(c†ϕℓ+1)…|0>= ∑ℓ det M ϕ†(ϕ1,...,ϕℓ-1,dϕℓ,ϕℓ+1, …) = ∑ℓϕℓ† dϕℓ = Trϕ† d ϕ. Google Scholar