J. Phys. Soc. Jpn. 76, 024603 (2007) [4 Pages]
FULL PAPERS
- Full text:
- PDF (eReader) / PDF (Download) (108 kB)
Received July 29, 2006; Accepted November 28, 2006; Published January 25, 2007
We study a simple model for the interstitialcy mechanism–one of the main mechanisms of the self-diffusion in crystalline solids. The diffusion coefficient depends on the interstitialcy concentration as well as the hopping rates of particles. We obtain an approximate expressions of the diffusion coefficient for various kinds of lattices by noting that the dynamics of an interstitialcy is identical with that of a particle in the vacancy assisted mechanism. These expressions are found to be consistent with our Monte Carlo simulation results for all the lattices examined as far as the interstitialcy-concentration is not too high.
©2007 The Physical Society of Japan
References
- 1 H.Bracht: MRS Bull. 25 (2000) 18. Crossref, Google Scholar
- 2 H. H.Silvestri: Ph. D. Thesis, University of California, Berkeley (2004). Google Scholar
- 3 H.Bracht, S. P.Niclols, W.Walukiewicz, J. P.Silveira, F.Briones, and E. E.Haller:Nature 408 (2000) 69. Crossref, Google Scholar
- 4 J.Bardeen and C.Herring: inImperfections in Nearly Perfect Crystals, ed. W.Shockley (Wiley, New York, 1952) p. 261. Google Scholar
- 5 R. E.Howard:Phys. Rev. 144 (1966) 650. Crossref, Google Scholar
- 6 S.Ishioka and M.Koiwa: Philos. Mag. A 41 (1980) 385. Crossref, Google Scholar
- 7 K.Compaan and Y.Haven: Trans. Faraday Soc. 52 (1956) 786; K.Compaan and Y.Haven: Trans. Faraday Soc. 54 (1958) 1498. Crossref, Google Scholar
- 8 M.Koiwa and S.Ishioka: J. Stat. Phys. 30 (1983) 477. Crossref, Google Scholar
- 9 K.Nakazato and K.Kitahara:Prog. Theor. Phys. 64 (1980) 2261. Crossref, Google Scholar
- 10 K.Nakazato and K.Kitahara:Point Defects and Defect Interactions in Metals (Univ. of Tokyo Press, Tokyo, 1982) p. 586. Google Scholar
- 11 Y.Suzuki, K.Kitahara, Y.Fujitani, and S.Kinouchi:J. Phys. Soc. Jpn. 71 (2002) 2936. Link, Google Scholar
- 12 R.Okamoto and Y.Fujitani:J. Phys. Soc. Jpn. 74 (2005) 2510. Link, Google Scholar
- 13 H.Bracht, E. E.Haller, and R.Clark-Phelps:Phys. Rev. Lett. 81 (1998) 393. Crossref, Google Scholar
- 14 H. D.Fuchs, W.Walukiewicz, E. E.Haller, W.Dondl, R.Schorer, G.Abstreiter, A. I.Rudnev, A. V.Tikhomirov, and V. I.Ozhogin:Phys. Rev. B 51 (1995) 16817. Crossref, Google Scholar
- 15 M.Yoshida, R.Tsuruno, Y.Kamiura, M.Takahashi, and H.Tomokage: Jpn. J. Appl. Phys. 36 (1997) 7156. Crossref, Google Scholar
- 16 The mechanism for which Compaan and Haven (1958) have calculated the correlation factor is referred to as interstitialcy mechanism in some references. 18,19) Google Scholar
- 17 P. M.Fahey, P. B.Griffin, and J. D.Plummer:Rev. Mod. Phys. 61 (1989) 289. Crossref, Google Scholar
- 18 J. R.King, T. E.Sharp, B.Tuck, and T. G.Rogers: Proc. R. Soc. London, Ser. A 450 (1995) 623. Crossref, Google Scholar
- 19 S.Matsumoto: inEncyclopedia of Materials: Science and Technology, ed. K. H. J.Buschow, R. W.Cahn, M. C.Flemings, B.Ilschner, E. J.Kramer, S.Mahajan, and P.Veyssiere (Elsevier, Amsterdam, 2001) p. 8543. Crossref, Google Scholar
- 20 W.-K.Leung, R. J.Needs, G.Rajagopal, S.Itoh, and S.Ihara:Phys. Rev. Lett. 83 (1999) 2351. Crossref, Google Scholar
- 21 P. E.Böchl, E.Smargiassi, R.Car, D. B.Laks, W.Andreoni, and S. T.Pantelides:Phys. Rev. Lett. 70 (1993) 2435. Crossref, Google Scholar