Subscriber access provided by Massachusetts Institute of Technology
J. Phys. Soc. Jpn. 76, 024603 (2007) [4 Pages]
FULL PAPERS

Self-Diffusion in a Lattice via the Interstitialcy Mechanism

+ Affiliations
1School of Fundamental Science and Technology, Keio University, Yokohama 223-8522

We study a simple model for the interstitialcy mechanism–one of the main mechanisms of the self-diffusion in crystalline solids. The diffusion coefficient depends on the interstitialcy concentration as well as the hopping rates of particles. We obtain an approximate expressions of the diffusion coefficient for various kinds of lattices by noting that the dynamics of an interstitialcy is identical with that of a particle in the vacancy assisted mechanism. These expressions are found to be consistent with our Monte Carlo simulation results for all the lattices examined as far as the interstitialcy-concentration is not too high.

©2007 The Physical Society of Japan

References

  • 1 H.Bracht: MRS Bull. 25 (2000) 18. CrossrefGoogle Scholar
  • 2 H. H.Silvestri: Ph. D. Thesis, University of California, Berkeley (2004). Google Scholar
  • 3 H.Bracht, S. P.Niclols, W.Walukiewicz, J. P.Silveira, F.Briones, and E. E.Haller:Nature 408 (2000) 69. CrossrefGoogle Scholar
  • 4 J.Bardeen and C.Herring: inImperfections in Nearly Perfect Crystals, ed. W.Shockley (Wiley, New York, 1952) p. 261. Google Scholar
  • 5 R. E.Howard:Phys. Rev. 144 (1966) 650. CrossrefGoogle Scholar
  • 6 S.Ishioka and M.Koiwa: Philos. Mag. A 41 (1980) 385. CrossrefGoogle Scholar
  • 7 K.Compaan and Y.Haven: Trans. Faraday Soc. 52 (1956) 786; K.Compaan and Y.Haven: Trans. Faraday Soc. 54 (1958) 1498. CrossrefGoogle Scholar
  • 8 M.Koiwa and S.Ishioka: J. Stat. Phys. 30 (1983) 477. CrossrefGoogle Scholar
  • 9 K.Nakazato and K.Kitahara:Prog. Theor. Phys. 64 (1980) 2261. CrossrefGoogle Scholar
  • 10 K.Nakazato and K.Kitahara:Point Defects and Defect Interactions in Metals (Univ. of Tokyo Press, Tokyo, 1982) p. 586. Google Scholar
  • 11 Y.Suzuki, K.Kitahara, Y.Fujitani, and S.Kinouchi:J. Phys. Soc. Jpn. 71 (2002) 2936. LinkGoogle Scholar
  • 12 R.Okamoto and Y.Fujitani:J. Phys. Soc. Jpn. 74 (2005) 2510. LinkGoogle Scholar
  • 13 H.Bracht, E. E.Haller, and R.Clark-Phelps:Phys. Rev. Lett. 81 (1998) 393. CrossrefGoogle Scholar
  • 14 H. D.Fuchs, W.Walukiewicz, E. E.Haller, W.Dondl, R.Schorer, G.Abstreiter, A. I.Rudnev, A. V.Tikhomirov, and V. I.Ozhogin:Phys. Rev. B 51 (1995) 16817. CrossrefGoogle Scholar
  • 15 M.Yoshida, R.Tsuruno, Y.Kamiura, M.Takahashi, and H.Tomokage: Jpn. J. Appl. Phys. 36 (1997) 7156. CrossrefGoogle Scholar
  • 16 The mechanism for which Compaan and Haven (1958) have calculated the correlation factor is referred to as interstitialcy mechanism in some references. 18,19) Google Scholar
  • 17 P. M.Fahey, P. B.Griffin, and J. D.Plummer:Rev. Mod. Phys. 61 (1989) 289. CrossrefGoogle Scholar
  • 18 J. R.King, T. E.Sharp, B.Tuck, and T. G.Rogers: Proc. R. Soc. London, Ser. A 450 (1995) 623. CrossrefGoogle Scholar
  • 19 S.Matsumoto: inEncyclopedia of Materials: Science and Technology, ed. K. H. J.Buschow, R. W.Cahn, M. C.Flemings, B.Ilschner, E. J.Kramer, S.Mahajan, and P.Veyssiere (Elsevier, Amsterdam, 2001) p. 8543. CrossrefGoogle Scholar
  • 20 W.-K.Leung, R. J.Needs, G.Rajagopal, S.Itoh, and S.Ihara:Phys. Rev. Lett. 83 (1999) 2351. CrossrefGoogle Scholar
  • 21 P. E.Böchl, E.Smargiassi, R.Car, D. B.Laks, W.Andreoni, and S. T.Pantelides:Phys. Rev. Lett. 70 (1993) 2435. CrossrefGoogle Scholar