J. Phys. Soc. Jpn. 77, 064301 (2008) [8 Pages]

Tailoring Magnetic Properties in Transition Metal–Benzene Sandwich Clusters: Ways to Design Molecular Magnets

+ Affiliations
1Research Center for Integrated Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-12922Creative Research Initiative “Sousei”, Hokkaido University, Sapporo 001-00213Research Institute for Computational Sciences, Advanced Institute of Science and Technology, Tsukuba, Ibaraki 305-8568

Transition metal–benzene (TM n Bz n +1 , with TM=Sc, Ti, and V, n =1 and 2) multiple-decker sandwich clusters have been studied by first-principles calculations. It was shown in our previous paper that in V 2 Bz 3 , the antiferromagnetic (AFM) and ferromagnetic (FM) states are nearly degenerate since the energy gain in FM state due to Kanamori–Terakura mechanism is compensated by the energy gain in AFM state due to polarization of edge Bzs. To design new clusters having much more stable FM state, two approaches are suggested. One is reducing the number of d electrons and the other is to weaken the hybridization strength between transition metals and edge Bz. In order to demonstrate the latter aspect, we take a thought experiment of replacing edge Bz with cyclopentadienyl ring C 5 H 5 . Either of these two methods or combinations of both has been demonstrated to be effective. Thus, magnetic properties of transition metal–aromatic molecule sandwich clusters can be tailored.

©2008 The Physical Society of Japan


  • 1 N. J.Long:Metallocenes (Blackwell Science, Oxford, U.K., 1998). Google Scholar
  • 2 T.Kurikawa, H.Takeda, M.Hirano, K.Judai, T.Arita, S.Nagao, A.Nakajima, and K.Kaya: Organometallics 18 (1999) 1430. CrossrefGoogle Scholar
  • 3 K.Miyajima, A.Nakajima, S.Yabushita, M. B.Knickelbein, and K.Kaya:J. Am. Chem. Soc. 126 (2004) 13202. CrossrefGoogle Scholar
  • 4 K.Miyajima, S.Yabushita, M. B.Knickelbein, and A.Nakajima:J. Am. Chem. Soc. 129 (2007) 8473. CrossrefGoogle Scholar
  • 5 J.Wang, P. H.Acioli, and J.Jellinek:J. Am. Chem. Soc. 127 (2005) 2812. CrossrefGoogle Scholar
  • 6 A. K.Kandalam, B. K.Rao, P.Jena, and R.Pandey:J. Chem. Phys. 120 (2004) 10414. CrossrefGoogle Scholar
  • 7 H.Weng, T.Ozaki, and K.Terakura:J. Phys. Soc. Jpn. 77 (2008) 014301. LinkGoogle Scholar
  • 8 T.Yasuike and S.Yabushita:J. Phys. Chem. A 103 (1999) 4533. CrossrefGoogle Scholar
  • 9 J.Kanamori and K.Terakura:J. Phys. Soc. Jpn. 70 (2001) 1433. LinkGoogle Scholar
  • 10 M. M.Rahman, H.Kasai, and E. S.Dy: Jpn. J. Appl. Phys. 44 (2005) 7954. CrossrefGoogle Scholar
  • 11 H.Xiang, J.Yang, J. G.Hou, and Q.Zhu:J. Am. Chem. Soc. 128 (2006) 2310. CrossrefGoogle Scholar
  • 12 V. V.Maslyuk, A.Bagrets, V.Meded, A.Arnold, F.Evers, M.Brandbyge, T.Bredow, and I.Mertig:Phys. Rev. Lett. 97 (2006) 097201. CrossrefGoogle Scholar
  • 13 http://www.openmx-square.org/ Google Scholar
  • 14 T.Ozaki:Phys. Rev. B 67 (2003) 155108; T.Ozaki and H.Kino:Phys. Rev. B 69 (2004) 195113; T.Ozaki and H.Kino:J. Chem. Phys. 121 (2004) 10879; T.Ozaki and H.Kino:Phys. Rev. B 72 (2005) 045121. CrossrefGoogle Scholar
  • 15 J. P.Perdew, K.Burke, and M.Ernzerhof:Phys. Rev. Lett. 77 (1996) 3865. CrossrefGoogle Scholar
  • 16 J. M.Soler, E.Artacho, J. D.Gale, A.Garcia, J.Junquera, P.Ordejón, and D.Sánchez-Portal:J. Phys.: Condens. Matter 14 (2002) 2745, and references therein. CrossrefGoogle Scholar
  • 17 M. J.Han, T.Ozaki, and J.Yu:Phys. Rev. B 73 (2006) 045110. CrossrefGoogle Scholar
  • 18 A supercell size of 13×13×15 in Å3, larger than the automatically determined supercell size by openMX (with every side being expanded by about 1 Å), has been used for n=2. We find that the difference in total energy caused by this expansion of the supercell size is only a few tenth of meV. Google Scholar
  • 19 B. R.Sohnlein, Y.Lei, and D.-S.Yang:J. Chem. Phys. 127 (2007) 114302, and references therein. CrossrefGoogle Scholar
  • 20 J.Kua and K. M.Tomlin:J. Phys. Chem. A 110 (2006) 11988. CrossrefGoogle Scholar
  • 21 In the paper by B. R.Sohnlein, S.Li, and D.-S.Yang:J. Chem. Phys. 123 (2005) 214306, the symmetry of the ground state of Sc(C6H6)2 is denoted as 2B3g, but it should be 2B1g. CrossrefGoogle Scholar
  • 22 for isolated Cp and Bz, the calculated energy levels for HOMO and LUMO in GGA are as follows: for CP, 0.282 eV (LUMO, pδ) and -5.214 eV (HOMO, pπ);for Bz, -1.436 eV (LUMO, pδ) and -6.204 eV (HOMO, pπ). Google Scholar
  • 23 As the wavefunction of this pδstate is symmetric with respect to mirror operation with respect to the plane containing the central Bz, the p orbitals perpendicular to the Bz plane cannot hybridize with this state. Google Scholar