Subscriber access provided by Massachusetts Institute of Technology
J. Phys. Soc. Jpn. 77, 093601 (2008) [4 Pages]
LETTERS

Possible Formation of Multicontinuous Structures by Rodlike Particles

+ Affiliations
1Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-85712Department of Chemistry, Faculty of Engineering, Gifu University, Gifu 501-1193

It is shown by extending the Landau theory of freezing that a tendency to form multicontinuous complex structures is possessed by simple systems consisting of rigid rodlike particles. The excellent stability of the Gyroid phase, which is most widely observed in nature, is naturally explained. An exotic structure found in thermotropic liquid crystals can be further regarded as an example.

©2008 The Physical Society of Japan

References

  • 1 I. W.Hamley:The Physics of Block Copolymers (Oxford University Press, Oxford, U.K., 1998). CrossrefGoogle Scholar
  • 2 G.Gompper and M.Schick: inSelf-Assembling Amphiphilic Systems, Phase Transitions and Critical Phenomena, ed. C.Domb and J. L.Lebowitz (Academic Press, San Diego, CA 1994) Vol. 16. Google Scholar
  • 3 S.Diele and P.Göring: inHandbook of Liquid Crystals, ed. D.Demus, D.Demus, D. GrayDemus, H.-W.SpiessandV.Vill(Wiley-VCH, Weinheim, 1998) Vol.2B. Google Scholar
  • 4 S.Hyde, S.Andersson, K.Larsson, Z.Blum, T.Landh, S.Lidin, and B. W.Ninham:The Language of Shape (Elsevier, Amsterdam, 1997). Google Scholar
  • 5 M. W.Matsen and F. S.Bates: Macromolecules 29 (1996) 1091. CrossrefGoogle Scholar
  • 6 W. T.Góźdź and R.Hołyst:Phys. Rev. E 54 (1996) 5012. CrossrefGoogle Scholar
  • 7 U. S.Schwarz and G.Gompper:Phys. Rev. E 59 (1999) 5528. CrossrefGoogle Scholar
  • 8 L.Onsager: Ann. N.Y. Acad. Sci. 51 (1949) 627. CrossrefGoogle Scholar
  • 9 J. E.Lennard-Jones and A. F.Devonshire: Proc. R. Soc. London, Ser. A 169 (1939) 317. CrossrefGoogle Scholar
  • 10 J. A.Pople and F. E.Karasz:J. Phys. Chem. Solids 18 (1961) 28. CrossrefGoogle Scholar
  • 11 S.Chandrasekhar, R.Shashidhar, and N.Tara:Mol. Cryst. Liq. Cryst. 10 (1970) 337. CrossrefGoogle Scholar
  • 12 P.Bolhuis and D.Frenkel:J. Chem. Phys. 106 (1997) 666. CrossrefGoogle Scholar
  • 13 L. J.Ellison, D. J.Michel, F.Barmes, and D. J.Cleaver:Phys. Rev. Lett. 97 (2006) 237801. CrossrefGoogle Scholar
  • 14 A.-M.Levelut and M.Clerc: Liq. Cryst. 24 (1998) 105. CrossrefGoogle Scholar
  • 15 S.Kutsumizu, T.Ichikawa, S.Yano, and S.Nojima: Chem. Commun. (1999) 1181. Google Scholar
  • 16 H.Mori, S.Kutsumizu, T.Ito, M.Fukatami, K.Saito, K.Sakajiri, and K.Moriya:Chem. Lett. 35 (2006) 362. CrossrefGoogle Scholar
  • 17 S.Alexander and J.McTague:Phys. Rev. Lett. 41 (1978) 702. CrossrefGoogle Scholar
  • 18 P. M.Chaikin and T. C.Lubensky:Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, U.K., 1995). CrossrefGoogle Scholar
  • 19 V. E.Podneks and I. W.Hamley:JETP Lett. 64 (1996) 617. CrossrefGoogle Scholar
  • 20 P.Garstecki and R.Hołyst:J. Chem. Phys. 113 (2000) 3772. CrossrefGoogle Scholar
  • 21 S.Kutsumizu, H.Mori, M.Fukatami, and K.Saito: J. Appl. Crystallogr. 40 (2007) s279. CrossrefGoogle Scholar
  • 22 S.Kutsumizu, H.Mori, M.Fukatami, S.Naito, K.Sakajiri, and K.Saito: Chem. Mater. 20 (2008) 3675. CrossrefGoogle Scholar
  • 23 K.Saito and M.Sorai:Chem. Phys. Lett. 366 (2002) 56. CrossrefGoogle Scholar
  • 24 S.Kutsumizu, K.Morita, S.Yano, and S.Nojima: Liq. Cryst. 29 (2002) 1459. CrossrefGoogle Scholar
  • 25 X.Zeng, G.Ungar, and M.Impéror-Clerc: Nat. Mater. 4 (2005) 562. CrossrefGoogle Scholar