J. Phys. Soc. Jpn. 77, 093601 (2008) [4 Pages]
LETTERS
- Full text:
- PDF (eReader) / PDF (Download) (559 kB)
Received May 23, 2008; Accepted July 4, 2008; Published August 25, 2008
It is shown by extending the Landau theory of freezing that a tendency to form multicontinuous complex structures is possessed by simple systems consisting of rigid rodlike particles. The excellent stability of the Gyroid phase, which is most widely observed in nature, is naturally explained. An exotic structure found in thermotropic liquid crystals can be further regarded as an example.
©2008 The Physical Society of Japan
KEYWORDS: freezing transition, Landau theory, multicontinuous structure, triply periodic minimal surface, Gyroid, thermotropic liquid crystal
References
- 1 I. W.Hamley:The Physics of Block Copolymers (Oxford University Press, Oxford, U.K., 1998). Crossref, Google Scholar
- 2 G.Gompper and M.Schick: inSelf-Assembling Amphiphilic Systems, Phase Transitions and Critical Phenomena, ed. C.Domb and J. L.Lebowitz (Academic Press, San Diego, CA 1994) Vol. 16. Google Scholar
- 3 S.Diele and P.Göring: inHandbook of Liquid Crystals, ed. D.Demus, D.Demus, D. GrayDemus, H.-W.SpiessandV.Vill(Wiley-VCH, Weinheim, 1998) Vol.2B. Google Scholar
- 4 S.Hyde, S.Andersson, K.Larsson, Z.Blum, T.Landh, S.Lidin, and B. W.Ninham:The Language of Shape (Elsevier, Amsterdam, 1997). Google Scholar
- 5 M. W.Matsen and F. S.Bates: Macromolecules 29 (1996) 1091. Crossref, Google Scholar
- 6 W. T.Góźdź and R.Hołyst:Phys. Rev. E 54 (1996) 5012. Crossref, Google Scholar
- 7 U. S.Schwarz and G.Gompper:Phys. Rev. E 59 (1999) 5528. Crossref, Google Scholar
- 8 L.Onsager: Ann. N.Y. Acad. Sci. 51 (1949) 627. Crossref, Google Scholar
- 9 J. E.Lennard-Jones and A. F.Devonshire: Proc. R. Soc. London, Ser. A 169 (1939) 317. Crossref, Google Scholar
- 10 J. A.Pople and F. E.Karasz:J. Phys. Chem. Solids 18 (1961) 28. Crossref, Google Scholar
- 11 S.Chandrasekhar, R.Shashidhar, and N.Tara:Mol. Cryst. Liq. Cryst. 10 (1970) 337. Crossref, Google Scholar
- 12 P.Bolhuis and D.Frenkel:J. Chem. Phys. 106 (1997) 666. Crossref, Google Scholar
- 13 L. J.Ellison, D. J.Michel, F.Barmes, and D. J.Cleaver:Phys. Rev. Lett. 97 (2006) 237801. Crossref, Google Scholar
- 14 A.-M.Levelut and M.Clerc: Liq. Cryst. 24 (1998) 105. Crossref, Google Scholar
- 15 S.Kutsumizu, T.Ichikawa, S.Yano, and S.Nojima: Chem. Commun. (1999) 1181. Google Scholar
- 16 H.Mori, S.Kutsumizu, T.Ito, M.Fukatami, K.Saito, K.Sakajiri, and K.Moriya:Chem. Lett. 35 (2006) 362. Crossref, Google Scholar
- 17 S.Alexander and J.McTague:Phys. Rev. Lett. 41 (1978) 702. Crossref, Google Scholar
- 18 P. M.Chaikin and T. C.Lubensky:Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, U.K., 1995). Crossref, Google Scholar
- 19 V. E.Podneks and I. W.Hamley:JETP Lett. 64 (1996) 617. Crossref, Google Scholar
- 20 P.Garstecki and R.Hołyst:J. Chem. Phys. 113 (2000) 3772. Crossref, Google Scholar
- 21 S.Kutsumizu, H.Mori, M.Fukatami, and K.Saito: J. Appl. Crystallogr. 40 (2007) s279. Crossref, Google Scholar
- 22 S.Kutsumizu, H.Mori, M.Fukatami, S.Naito, K.Sakajiri, and K.Saito: Chem. Mater. 20 (2008) 3675. Crossref, Google Scholar
- 23 K.Saito and M.Sorai:Chem. Phys. Lett. 366 (2002) 56. Crossref, Google Scholar
- 24 S.Kutsumizu, K.Morita, S.Yano, and S.Nojima: Liq. Cryst. 29 (2002) 1459. Crossref, Google Scholar
- 25 X.Zeng, G.Ungar, and M.Impéror-Clerc: Nat. Mater. 4 (2005) 562. Crossref, Google Scholar