Subscriber access provided by Massachusetts Institute of Technology
J. Phys. Soc. Jpn. 80, 093708 (2011) [4 Pages]
LETTERS

Magnetic Ordering and Tunable Structural Phase Transition in the Chromic Compound CuMoO4

+ Affiliations
1Department of Physics, Kyushu University, Fukuoka 812-8581, Japan2Department of Applied Quantum Physics, Kyushu University, Fukuoka 819-0395, Japan3Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan4National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan5Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada6Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada7Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

We report the first observation of long-range magnetic order in the chromic compound CuMoO 4 at 1.75 K by means of a specific heat measurement in zero magnetic field. Magnetization measurements performed up to 57 T at 4.2 K indicate a plateau at 1/3 of the saturated magnetization consistent with a simple magnetic model of two non-interacting Cu 2+ spins and two isolated antiferromagnetic dimers ( J / k B = 26 K). A large temperature-hysteresis in the magnetic susceptibility is observed to originate from the structural phase transition and to be closely related to chromism between α-CuMoO 4 (green) and γ-CuMoO 4 (brownish-red). This discontinuous phase transition is tunable using substitutional effects in Cu 1- x Zn x MoO 4 (0≤ x ≤0.1) and CuMo 1- y W y O 4 (0≤ y ≤0.1) over a wide range of temperatures.

©2011 The Physical Society of Japan

References

  • 1 Y.Fukuda:Inorganic Chromotropism, ed. Y.Fukuda (Kodansha, Tokyo, 2007) p. 1. CrossrefGoogle Scholar
  • 2 M.Wiesmann, H.Ehrenberg, G.Miehe, T.Peun, H.Weitzel, and H.Fuess: J. Solid State Chem. 132 (1997) 88. CrossrefGoogle Scholar
  • 3 Th.Weber, M.Harz, B.Wehner, G.Zahn, and P.Paufler: Z. Kristallogr. 213 (1998) 210. CrossrefGoogle Scholar
  • 4 H.Ehrenberg, M.Wiesmann, J.Garcia-Jaca, H.Weitzel, and H.Fuess: J. Magn. Magn. Mater. 182 (1998) 152. CrossrefGoogle Scholar
  • 5 H.Ehrenberg, H.Weitzel, H.Paulus, M.Wiesmann, G.Wltscek, M.Geselle, and H.Fuess:J. Phys. Chem. Solids 58 (1997) 153. CrossrefGoogle Scholar
  • 6 F.Rodríguez, D.Hernández, J.Garcia-Jaca, H.Ehrenberg, and H.Weitzel:Phys. Rev. B 61 (2000) 16497. CrossrefGoogle Scholar
  • 7 W.Reichelt, T.Weber, T.Söhnel, and S.Däbritz: Z. Anorg. Allg. Chem. 626 (2000) 2020. CrossrefGoogle Scholar
  • 8 S.Haravifard, K.Fritsch, T.Asano, J. P.Clancy, Z.Yamani, G.Ehlers, T.Nishimura, Y.Inagaki, T.Kawae, I.Swainson, and B. D.Gaulin: to be published in Phys. Rev. B. Google Scholar
  • 9 J. B.Goodenough:Phys. Rev. 100 (1955) 564. CrossrefGoogle Scholar
  • 10 J.Kanamori:J. Phys. Chem. Solids 10 (1959) 87. CrossrefGoogle Scholar
  • 11 P. W.Anderson: Solid State Phys. 14 (1963) 99. CrossrefGoogle Scholar
  • 12 M.Gaudon, C.Carbonera, A. E.Thiry, A.Demourgues, P.Deniard, C.Payen, J.-F.Letard, and S.Jobic: Inorg. Chem. 46 (2007) 10200. CrossrefGoogle Scholar
  • 13 T.Ito, H.Takagi, and T.Asano: Chem. Mater. 21 (2009) 3376. CrossrefGoogle Scholar