Subscriber access provided by Massachusetts Institute of Technology
J. Phys. Soc. Jpn. 81, 104715 (2012) [9 Pages]
FULL PAPERS

Superconductivity in the YIr2Si2 and LaIr2Si2 Polymorphs

+ Affiliations
1Faculty of Mathematics and Physics, Charles University, DCMP, Ke Karlovu 5, CZ-12116 Praha 2, Czech Republic

We report on the existence of superconductivity in YIr 2 Si 2 and LaIr 2 Si 2 compounds in relation to the crystal structure. The two compounds crystallize in two structural polymorphs, both tetragonal. The high-temperature polymorph (HTP) is of the CaBe 2 Ge 2 structure type (space group P 4/ n m m ), while the low-temperature polymorph (LTP) is of the ThCr 2 Si 2 structure type ( I 4/ m m m ). By studying the polycrystals prepared by arc melting, we observed that the rapidly cooled samples retain the HTP even at room temperature (RT) and below. Annealing such samples at ≥900 °C followed by slow cooling to RT provides the LTP. Both the HTP and LTP were subsequently studied with respect to magnetism and superconductivity by electrical resistivity, magnetization, AC susceptibility, and specific heat measurements. The HTP and LTP of both compounds behave as Pauli paramagnets. Superconductivity was found exclusively in the HTP of both compounds below T SC (= 2.52 K in YIr 2 Si 2 and 1.24 K in LaIr 2 Si 2 ). The relationships of magnetism and superconductivity with the electronic and crystal structures are discussed by comparing experimental data with the results of first-principles electronic structure calculations.

©2012 The Physical Society of Japan

References

  • 1 L.Chełmicki, J.Leciejewicz, and A.Zygmunt:J. Phys. Chem. Solids 46 (1985) 529. CrossrefGoogle Scholar
  • 2 G.Czjzek, V.Oestreich, H.Schmidt, K.ŁcakaandK.Tomala:J. Magn. Magn. Mater. 79(1989)42. CrossrefGoogle Scholar
  • 3 M. W.Dirken, R. C.Thiel, and K. H. J.Buschow: J. Less-Common Met. 147 (1989) 97. CrossrefGoogle Scholar
  • 4 E. H.El Ghadraoui, J. Y.Pivan, R.Guérin, O.Pena, J.Padiou, and M.Sergent: Mater. Res. Bull. 23 (1988) 1345. CrossrefGoogle Scholar
  • 5 I.Felner and I.Nowik:Solid State Commun. 47 (1983) 831. CrossrefGoogle Scholar
  • 6 I.Felner and I.Nowik:J. Phys. Chem. Solids 45 (1984) 419. CrossrefGoogle Scholar
  • 7 I.Felner and I.Nowik:J. Phys. Chem. Solids 46 (1985) 681. CrossrefGoogle Scholar
  • 8 H.Fujii and A.Sato: J. Alloys Compd. 487 (2009) 198. CrossrefGoogle Scholar
  • 9 K.Hiebl and P.Rogl:J. Magn. Magn. Mater. 50 (1985) 39. CrossrefGoogle Scholar
  • 10 W.Jeitschko and M.Reehuis:J. Phys. Chem. Solids 48 (1987) 667. CrossrefGoogle Scholar
  • 11 W.Jeitschko, R.Glaum, and L.Boonk:J. Solid State Chem. 69 (1987) 93. CrossrefGoogle Scholar
  • 12 M.Kuznietz, H.Pinto, H.Ettedgui, and M.Melamud:Phys. Rev. B 40 (1989) 7328. CrossrefGoogle Scholar
  • 13 J.Leciejewicz, A.Szytuła, M.Ślaski, and A.Zygmunt:Solid State Commun. 52 (1984) 475. CrossrefGoogle Scholar
  • 14 S.Quezel, J.Rossatmignod, B.Chevalier, P.Lejay, and J.Etourneau:Solid State Commun. 49 (1984) 685. CrossrefGoogle Scholar
  • 15 B.Chevalier, J. M. D.Coey, B.Lloret, and J.Etourneau:J. Phys. C 19 (1986) 4521. CrossrefGoogle Scholar
  • 16 B.Buffat, B.Chevalier, M. H.Tuilier, B.Lloret, and J.Etourneau:Solid State Commun. 59 (1986) 17. CrossrefGoogle Scholar
  • 17 M.Mihalik, M.Diviš, and V.Sechovský:Physica B 404 (2009) 3191. CrossrefGoogle Scholar
  • 18 T.Endstra, G. J.Nieuwenhuys, A. A.Menovsky, and J. A.Mydosh:J. Appl. Phys. 69 (1991) 4816. CrossrefGoogle Scholar
  • 19 M.Mihalik, M.Diviš, and V.Sechovský:J. Magn. Magn. Mater. 322 (2010) 1153. CrossrefGoogle Scholar
  • 20 M.Mihalik, M.Diviš, V.Sechovský, N.Kozlova, J.Freudenberger, N.Stüßer, and A.Hoser:Phys. Rev. B 81 (2010) 174431. CrossrefGoogle Scholar
  • 21 R.Welter, K.Halich, and B.Malaman: J. Alloys Compd. 353 (2003) 48. CrossrefGoogle Scholar
  • 22 M.Mihalik, Z.Matěj, M.Diviš, and V.Sechovský: Intermetallics 17 (2009) 927. CrossrefGoogle Scholar
  • 23 M.Mihalik, J.Pospíšil, A.Hoser, and V.Sechovský:Phys. Rev. B 83 (2011) 134414. CrossrefGoogle Scholar
  • 24 B.Chevalier, P.Lejay, B.Lloret, W. X.Zhong, J.Etourneau, and P.Hagenmuller: Ann. Chim. Sci. Mater. 9 (1984) 987. Google Scholar
  • 25 Z.Hossain, C.Geibel, T.Radu, Y.Tokiwa, F.Weickert, C.Krellner, H.Jeevan, P.Gegenwart, and F.Steglich:Physica B 378–380 (2006) 74. CrossrefGoogle Scholar
  • 26 S.Danzenbächer, Y.Kucherenko, C.Laubschat, D. V.Vyalikh, Z.Hossain, C.Geibel, X. J.Zhou, W. L.Yang, N.Mannella, Z.Hussain, Z. X.Shen, and S. L.Molodtsov:Phys. Rev. Lett. 96 (2006) 106402. CrossrefGoogle Scholar
  • 27 A.Hiess, O.Stockert, M. M.Koza, Z.Hossain, and C.Geibel:Physica B 378–380 (2006) 748. CrossrefGoogle Scholar
  • 28 Y.Tokiwa, P.Gegenwart, Z.Hossain, J.Ferstl, G.Sparn, C.Geibel, and F.Steglich:Physica B 378–380 (2006) 746. CrossrefGoogle Scholar
  • 29 W. T.Ziegler, R. A.Young, and A. L.Floyd,Jr.:J. Am. Chem. Soc. 75 (1953) 1215. CrossrefGoogle Scholar
  • 30 J.Wittig:Phys. Rev. Lett. 24 (1970) 812. CrossrefGoogle Scholar
  • 31 H. F.Braun, T.Jarlborg, and A.Junod:Physica B+C 135 (1985) 397. CrossrefGoogle Scholar
  • 32 R. N.Shelton, H. F.Braun, and E.Musick:Solid State Commun. 52 (1984) 797. CrossrefGoogle Scholar
  • 33 H. F.Braun, N.Engel, and E.Parthé:Phys. Rev. B 28 (1983) 1389. CrossrefGoogle Scholar
  • 34 M.Hirjak, P.Lejay, B.Chevalier, J.Etourneau, and P.Hagenmuller: J. Less-Common Met. 105 (1985) 139. CrossrefGoogle Scholar
  • 35 I.Higashi, P.Lejay, B.Chevalier, J.Étourneau, and P.Hagenmuller: Rev. Chim. Minerale 21 (1984) 239. Google Scholar
  • 36 P.Lejay, I.Higashi, B.Chevalier, M.Hirjak, J.Etourneau, and P.Hagenmuller: C. R. Acad. Sci. Ser. Ii 296 (1983) 1583. Google Scholar
  • 37 H. M.Rietveld: J. Appl. Crystallogr. 2 (1969) 65. CrossrefGoogle Scholar
  • 38 J.Rodríguez-Carvajal:Physica B 192 (1993) 55. CrossrefGoogle Scholar
  • 39 J.Prokleška, J.Pospíšil, J.Vejpravová Poltierová, V.Sechovský, and J.Šebek:J. Phys.: Conf. Ser. 200 (2010) 012161. CrossrefGoogle Scholar
  • 40 J. P.Perdew and Y.Wang:Phys. Rev. B 45 (1992) 13244. CrossrefGoogle Scholar
  • 41 Z. G.Wu and R. E.Cohen:Phys. Rev. B 73 (2006) 235116. CrossrefGoogle Scholar
  • 42 J. P.Perdew, K.Burke, and M.Ernzerhof:Phys. Rev. Lett. 77 (1996) 3865. CrossrefGoogle Scholar
  • 43 J. P.Perdew, A.Ruzsinszky, G. I.Csonka, O. A.Vydrov, G. E.Scuseria, L. A.Constantin, X.Zhou, and K.Burke:Phys. Rev. Lett. 100 (2008) 136406. CrossrefGoogle Scholar
  • 44 I. R.Shein:Physica B 406 (2011) 3525. CrossrefGoogle Scholar
  • 45 K.Schwarz, P.Blaha, and G. K. H.Madsen:Comput. Phys. Commun. 147 (2002) 71. CrossrefGoogle Scholar
  • 46 M.Mihalik, J.Pospíšil, A.Rudajevová, X.Marti, D.Wallacher, A.Hoser, T.Hofmann, M.Diviš, and V.Sechovský: Intermetallics 19 (2011) 1622. CrossrefGoogle Scholar
  • 47 C. A.Martin:J. Phys.: Condens. Matter 3 (1991) 5967. CrossrefGoogle Scholar
  • 48 M.Tinkham:Phys. Rev. 129 (1963) 2413. CrossrefGoogle Scholar
  • 49 J. A.Woollam, R. B.Somoano, and P.O'Connor:Phys. Rev. Lett. 32 (1974) 712. CrossrefGoogle Scholar
  • 50 A.Narduzzo, M. S.Grbić, M.Požek, A.Dulčić, D.Paar, A.Kondrat, C.Hess, I.Hellmann, R.Klingeler, J.Werner, A.Köhler, G.Behr, and B.Büchner:Phys. Rev. B 78 (2008) 012507. CrossrefGoogle Scholar
  • 51 N. R.Werthamer, E.Helfand, and P. C.Hohenberg:Phys. Rev. 147 (1966) 295. CrossrefGoogle Scholar
  • 52 J.Pospíšil, M.Kratochvílová, M.Diviš, J.Prokleška, J.Poltierová Vejpravová, and V.Sechovský: J. Alloys Compd. 509 (2011) 1401. CrossrefGoogle Scholar
  • 53 W. L.McMillan:Phys. Rev. 167 (1968) 331. CrossrefGoogle Scholar