J. Phys. Soc. Jpn. 77, pp. 47-53 (2008) [7 Pages]
Proceedings of the International Symposium on Fe-Pnictide Superconductors

NMR Measurements of Intrinsic Spin Susceptibility in LaFeAsO0.9F0.1

+ Affiliations
1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S4M1, Canada2Canadian Institute for Advanced Research, Toronto, Ontario M5G1Z8, Canada3Materials Science and Technology Division, Oak Ridge National Laboratory, TN 37831, U.S.A.

We will probe the intrinsic behavior of spin susceptibility χ spin in the LaFeAsO 1- x F x superconductor ( x ∼0.1, T c ∼27 K) using 19 F and 75 As NMR techniques. Our new results firmly establish a pseudo-gap behavior with Δ PG / k B ∼140 K. The estimated magnitude of χ spin at 290 K, χ spin ∼1.8 ×10 -4 emu/mol-Fe, is approximately twice larger than that in high T c cuprates. We also show that χ spin levels off below ∼50 K down to T c .

©2008 The Physical Society of Japan

References

  • 1 Y.Kamihara, T.Watanabe, M.Hirano, and H.Hosono: J. Am. Chem. Soc. 130 (2008) 3296. CrossrefGoogle Scholar
  • 2 A. S.Sefat, M. M.McGuire, B. C.Sales, R.Jin, J. Y.Howe, and D.Mandrus: Phys. Rev. B 77 (2008) 174503. CrossrefGoogle Scholar
  • 3 X. H.Chen, T.Wu, G.Wu, R. H.Liu, H.Chen, and D. F.Fang: Nature 453 (2008) 761. CrossrefGoogle Scholar
  • 4 Z. A.Ren, J.Yang, W.Lu, W.Yi, X. L.Shen, Z. C.Li, G. C.Che, X. L.Dong, L. L.Sun, F.Zhou, and Z.-X.Zhao: Europhys. Lett. 82 (2008) 57002. CrossrefGoogle Scholar
  • 5 M.Rotter, M.Tegel, and D.Johrendt: Phys. Rev. Lett. 101 (2008) 107006. CrossrefGoogle Scholar
  • 6 A. S.Sefat, A.Huq, M. A.McGuire, R.Jin, B. C.Sales, and D.Mandrus: Phys. Rev. B 78 (2008) 104505. CrossrefGoogle Scholar
  • 7 A. S.Sefat, R.Jin, M. M.McGuire, B. C.Sales, D. J.Singh, and D.Mandrus: Phys. Rev. Lett. 101 (2008) 117004. CrossrefGoogle Scholar
  • 8 N. W.Ashcroft and N. D.Mermin: Solid State Physics (Halt-Saunders, Philadelphia, PA, 1976) p. 644. Google Scholar
  • 9 Y.Obata: J. Phys. Soc. Jpn. 18 (1963) 1020. LinkGoogle Scholar
  • 10 V.Jaccarino: Proc. Int. School of Physics, Enrico Fermi (Academic Press, New York, 1967) Vol. 37. Google Scholar
  • 11 F.Mila and T. M.Rice: Physica C 157 (1989) 561. CrossrefGoogle Scholar
  • 12 C. H.Pennington, D. J.Durand, C. P.Slichter, J. P.Rice, E. D.Bokowski, and D. M.Ginsberg: Phys. Rev. B 39 (1989) 2902. CrossrefGoogle Scholar
  • 13 A. M.Clogston and V.Jaccarino: Phys. Rev. B 121 (1961) 1357. CrossrefGoogle Scholar
  • 14 C.Cohen-Tannoudji, B.Diu, and F.Laloe: Quantum Mechanics (Wiley, New York, 1977) p. 1217. Google Scholar
  • 15 D.-H.Singh and M.-H.Du: Phys. Rev. Lett. 100 (2008) 237003. CrossrefGoogle Scholar
  • 16 T.Imai, A. W.Hunt, K. R.Thurber, and F. C.Chou: Phys. Rev. Lett. 81 (1998) 3006. CrossrefGoogle Scholar
  • 17 K.Selte, A.Kjejshus, and A. F.Andersen: Acta Chem. Scand. 26 (1972) 3101. CrossrefGoogle Scholar
  • 18 J. F.Annett: Superconductivity (Oxford University Press, Oxford, U.K., 2004). Google Scholar
  • 19 C.de la Cruz, Q.Huang, J. W.Lynn, J.Li, W.Ratcliff, J. L.Zarestky, H. A.Mook, G. F.Chen, J. L.Luo, N. L.Wang, and P. C.Dai: Nature 453 (2008) 899. CrossrefGoogle Scholar
  • 20 In ref. 16, different temperature dependencies of 17O and 101Ru NMR Knight shifts data were interpreted throughly in the context of ferromagnetic correlations in all three bands, which turned out to be insufficient because quasi-1d electron–electron correlations effects exist in two of the bands due to Fermi-surface nesting effects. However, all the conclusions are still valid as long as one reads off “ferromagnetic” correlations in the quasi-1d bands as “antiferromagnetic.” Google Scholar
  • 21 K.Ahilan, F. L.Ning, T.Imai, A. S.Sefat, R.Jin, M. A.McGuire, B. C.Sales, and D.Mandrus: Phys. Rev. B 78 (2008) 100501. CrossrefGoogle Scholar
  • 22 F. L.Ning, K.Ahilan, T.Imai, A. S.Sefat, R.Jin, M. A.McGuire, B. C.Sales, and D.Mandrus: J. Phys. Soc. Jpn. 77 (2008) 103705. LinkGoogle Scholar
  • 23 A.Abragam: Principles of Nuclear Magnetism (Oxford University Press, Oxford, U.K., 1961) p. 232. Google Scholar
  • 24 C. P.Slichter: Principles of Magnetic Resonance (Springer, Heidelberg, 1990) 3rd ed., p. 179. CrossrefGoogle Scholar
  • 25 There are two pieces of evidence that supportsAhf>0 at19F sites. First, a dynamical scaling law holds between χspin (i.e.,19K) and low frequency spin fluctuations19(1/T1T). [ahilan]The latter has no ambiguities in the sign, and definitely decreases with temperature towardTc. As such χspin should also decrease towardTc. [ahilan]Second, the sign of hyperfine coupling is known to be positive at75As sites in FeAs layers. [bafeas]As shown in §4, the75As Knight shift shows identical behavior as19K, and the former decreases towardTc. Google Scholar
  • 26 From the dynamical scaling relation between19K and19(1/T1T), we estimated19Kchem∼30 ppm = 0.03% for unaligned polycrystalline sample of LaFeAsO0.89F0.11. [ahilan] By repeating the same procedure for the present case, we obtain19Kchem∼0.045 ±0.015%. Google Scholar
  • 27 Y.Nakai, K.Ishida, Y.Kamihara, M.Hirano, and H.Hosono: J. Phys. Soc. Jpn. 77 (2008) 073701. LinkGoogle Scholar
  • 28 K.Kitagawa, N.Katayama, K.Ohgushi, M.Yoshida, and M.Takigawa: arXiv:0807.4613. Google Scholar
  • 29 M.Takigawa, P. C.Hammel, R. H.Heffner, Z.Fisk, J. L.Smith, and R.Schwartz: Phys. Rev. B 39 (1989) 300. CrossrefGoogle Scholar
  • 30 H.-J.Grafe, D.Paar, G.Lang, N. J.Curro, G.Behr, J.Werner, J.Hamann-Borrero, C.Hess, N.Leps, R.Klingeler, and B.Buechner: Phys. Rev. Lett. 101 (2008) 047003. CrossrefGoogle Scholar