J. Phys. Soc. Jpn. 80, SB007 (2011) [4 Pages]
Proceedings of the International Workshop on Neutron Applications on Strongly Correlated Electron Systems 2011 (NASCES11)

Repetition Rate Multiplication: RRM, an Advanced Measuring Method Planed for the Backscattering Instrument, DNA at the MLF, J-PARC

+ Affiliations
1Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan2Comprehensive Research Organization for Science and Society, Tokai, Naka, Ibaraki 319-1106, Japan3Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan4Institute for Solid State Physics-Neutron Scattering Laboratory, University of Tokyo, Tokai, Ibaraki 319-1106, Japan5Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan6HAS SzFKI, Pf. 49, 1525 Budapest, Hungary and European Spallation Source ESS AB, PO BOX 176, 22100 Lund, Sweden7NIST Center for Neutron Research, NIST, 100 Bureau Drive STOP 6102 Gaithersburg, MD 20899-1070, U.S.A.8Institut Laue-Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France

A Si-analyzer neutron backscattering spectrometer, DNA , in MLF is the first indirect geometry instrument which chooses the coupled moderator as a pulsed neutron source in addition with a high speed disc chopper as a pulse-shaping device, aiming for high energy resolution with high intensity. The pulse-shaping has the advantage of obtaining a variety of slit opening times. On the other hand, it has the disadvantage of limiting the wavelength band width measured within one pulse-shaped neutron beam. This disadvantage is solved by employing 4 slit discs on the pulse-shaping chopper and generating multiple pulse-shaped incident beams to realize efficient measuring, the so called Repetition Rate Multiplication: RRM technique. The automatic phasing procedure for the RRM technique is firstly discussed.

©2011 The Physical Society of Japan


  • 1 K.Shibata, N.Takahashi, K.Nakajima, H.Nakagawa, S.Fujiwara, Y.Kawakita, and T.Sato: Hamon 20 (2010) 13. CrossrefGoogle Scholar
  • 2 M.Harada, N.Watanabe, M.Teshigawara, T.Kai, F.Maekawa, T.Kato, and Y.Ikeda: Proc. 17th Meet. Int. Collaboration on Advanced Neutron Sources, Santa Fe, 2005, Proc. ICANS-XVII (2005) 700. Google Scholar
  • 3 E.Mamontov, M.Zamponi, S.Hammons, W. S.Keener, M.Hagen, and K. W.Herwig: Neutron News 19 (2008) 22. CrossrefGoogle Scholar
  • 4 K. H.Andersen: J. Neutron Res. 10 (2002) 179. CrossrefGoogle Scholar
  • 5 N.Takahashi, K.Shibata, T. J.Sato, I.Tamura, R.Kajimoto, S.Harjo, K.Oikawa, M.Arai, and F.Mezei: J. Phys. Chem. Solids 68 (2007) 2199. CrossrefGoogle Scholar
  • 6 M.Arai, K.Aizawa, K.Nakajima, K.Shibata, and N.Takahashi: JAEA-Review 2008-036 (2008). Google Scholar
  • 7 M.Arai, K.Aizawa, K.Nakajima, K.Shibata, and N.Takahashi: JAEA-Review 2009-014 (2009). Google Scholar
  • 8 N.Takahashi, K.Shibata, T. J.Sato, K.Nakajima, R.Kajimoto, K.Oikawa, M.Arai, and C.Schanzer: Proc. The 18th Meet. Int. Collaboration on Advanced Neutron Sources, Dongguan, 2007, Proc. ICANS-XVIII (2007) 373. Google Scholar
  • 9 N.Takahashi, K.Shibata, T. J.Sato, M.Arai, and F.Mezei: Nucl. Instrum. Methods Phys. Res., Sect. A 587 (2008) 350. CrossrefGoogle Scholar
  • 10 N.Takahashi, K.Shibata, T. J.Sato, Y.Kawakita, I.Tsukushi, N.Metoki, K.Nakajima, and M.Arai: Nucl. Instrum. Methods Phys. Res., Sect. A 600 (2009) 91. CrossrefGoogle Scholar
  • 11 B.Frick: Neutron and X-ray Spectroscopy (Springer, Dordrecht, 2006) p. 483. CrossrefGoogle Scholar
  • 12 N.Takahashi, K.Shibata, T. J.Sato, and M.Arai: J. Neutron Res. 15 (2007) 61. CrossrefGoogle Scholar
  • 13 The interval of slit opening shown in Fig. 3 is corresponding to neighboring two slits. On the other hand, the case discussed in the section 4 is corresponding to an individual slit itself. Google Scholar