Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 14, 010304 (2017) [4 pages]
Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016)
The Link Between the Local Bubble and Radioisotopic Signatures on Earth
1Department of Astronomy and Astrophysics, Berlin Institute of Technology, Hardenbergstr. 36, 10623 Berlin, Germany
2University of Vienna, Faculty of Physics — Isotope Research and Nuclear Physics, VERA Laboratory, Währingerstr. 17, 1090 Vienna, Austria
3Department of Nuclear Physics, The Australian National University, Canberra, ACT 2601, Australia
4Institute of Technology, Shimizu Corporation, Koto, Tokyo 135-8530, Japan
5Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
6Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraß e 12-14, 69120 Heidelberg, Germany
7Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
8Senckenberg Collections of Natural History Dresden, GeoPlasmaLab, Königsbrücker Landstraße 159, 01109 Dresden, Germany
9MALT (Micro Analysis Laboratory, Tandem Accelerator), The University Museum, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
10Helmholtz–Zentrum Dresden–Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
11Graduate School of Integrated Basic Sciences, Nihon University, Setagaya, Tokyo 156-8550, Japan
Received August 20, 2016

Traces of 2–3 Myr old 60Fe were recently discovered in a manganese crust and in lunar samples. We have found that this signal is extended in time and is present in globally distributed deep-sea archives. A second 6.5–8.7 Myr old signature was revealed in a manganese crust. The existence of the Local Bubble hints to a recent nearby supernova-activity starting 13 Myr ago. With analytical and numerical models generating the Local Bubble, we explain the younger 60Fe-signature and thus link the evolution of the solar neighborhood to terrestrial anomalies.

©2017 The Physical Society of Japan

References

  • 1) R.Diehl, J. Phys.: Conf. Ser. 665, 012011 (2016). 10.1088/1742-6596/665/1/012011 Google Scholar
  • 2) K.Knie et al., Phys. Rev. Lett. 83, 18 (1999). 10.1103/PhysRevLett.83.18 Google Scholar
  • 3) K.Knie et al., Phys. Rev. Lett. 93, 171103 (2004). 10.1103/PhysRevLett.93.171103 Google Scholar
  • 4) C.Fitoussi et al., Phys. Rev. Lett. 101, 121101 (2008). 10.1103/PhysRevLett.101.121101 Google Scholar
  • 5) A.Wallner et al., Nature 532, 69 (2016). 10.1038/nature17196 Google Scholar
  • 6) D.Breitschwerdt et al., Nature 532, 73 (2016). 10.1038/nature17424 Google Scholar
  • 7) J.Feige et al., EPJ Web Conf. 63, 03003 (2013). 10.1051/epjconf/20136303003 Google Scholar
  • 8) K. A.Farley et al., Nature 439, 295 (2006). 10.1038/nature04391 Google Scholar
  • 9) P.Ludwig et al., Proc. Natl. Acad. Sci. U.S.A. 113, 9232 (2016). 10.1073/pnas.1601040113 Google Scholar
  • 10) L.Fimiani et al., Phys. Rev. Lett. 116, 151104 (2016). 10.1103/PhysRevLett.116.151104 Google Scholar
  • 11) F. M.Stuart and M. R.Lee, Chem. Geol. 322–323, 209 (2012). 10.1016/j.chemgeo.2012.07.002 Google Scholar
  • 12) M.Kachelrieß et al., Phys. Rev. Lett. 115, 181103 (2015). 10.1103/PhysRevLett.115.181103 Google Scholar
  • 13) W. R.Binns et al., Science 352, 677 (2016). 10.1126/science.aad6004 Google Scholar
  • 14) B. J.Fry, B. D.Fields, and J. R.Ellis, Astrophys. J. 800, 71 (2015). 10.1088/0004-637X/800/1/71 Google Scholar
  • 15) B.Fuchs et al., Mon. Not. R. Astron. Soc. 373, 993 (2006). 10.1111/j.1365-2966.2006.11044.x Google Scholar