JPS Conf. Proc. 14, 010802 (2017) [6 pages]
Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016)
How Well Do We Know The Supernova Equation of State?
1Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
2LUTH, CNRS, Observatoire de Paris, Université Paris Diderot, 5 place Jules Janssen, F-92195 Meudon, France
3GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
4Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, pl. M. Borna 9, PL-50-204 Wrocław, Poland
Received August 20, 2016

We give an overview about equations of state (EOS) which are currently available for simulations of core-collapse supernovae and neutron star mergers. A few selected important aspects of the EOS, such as the symmetry energy, the maximum mass of neutron stars, and cluster formation, are confronted with constraints from experiments and astrophysical observations. There are just very few models which are compatible even with this very restricted set of constraints. These remaining models illustrate the uncertainty of the uniform nuclear matter EOS at high densities. In addition, at finite temperatures the medium modifications of nuclear clusters represent a conceptual challenge. In conclusion, there has been significant development in the recent years, but there is still need for further improved general purpose EOS tables.

©2017 The Physical Society of Japan

References

  • 1) M.Oertel, M.Hempel, T.Klähn, and S.Typel, submitted to Rev. Mod. Phys. (2016) .Google Scholar
  • 2) M. F.El Eid and W.Hillebrandt, Astron. Astrophys. Suppl. Ser. 42, 215 (1980).Google Scholar
  • 3) W.Hillebrandt, K.Nomoto, and R. G.Wolff, Astron. Astrophys. 133, 175 (1984).Google Scholar
  • 4) J. M.Lattimer and D. F.Swesty, Nucl. Phys. A 535, 331 (1991). 10.1016/0375-9474(91)90452-C Google Scholar
  • 5) H.Shen, H.Toki, K.Oyamatsu, and K.Sumiyoshi, Nucl. Phys. A 637, 435 (1998). 10.1016/S0375-9474(98)00236-X Google Scholar
  • 6) H.Shen, H.Toki, K.Oyamatsu, and K.Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998). 10.1143/PTP.100.1013 Google Scholar
  • 7) H.Shen, H.Toki, K.Oyamatsu, and K.Sumiyoshi, Astrophys. J. Suppl. Ser. 197, 20 (2011). 10.1088/0067-0049/197/2/20 Google Scholar
  • 8) S.Furusawa, K.Sumiyoshi, S.Yamada, and H.Suzuki, Astrophys. J. 772, 95 (2013). 10.1088/0004-637X/772/2/95 Google Scholar
  • 9) M.Hempel and J.Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010). 10.1016/j.nuclphysa.2010.02.010 Google Scholar
  • 10) M.Hempel, T.Fischer, J.Schaffner-Bielich, and M.Liebendörfer, Astrophys. J. 748, 70 (2012). 10.1088/0004-637X/748/1/70 Google Scholar
  • 11) T.Fischer, M.Hempel, I.Sagert, Y.Suwa, and J.Schaffner-Bielich, Eur. Phys. J. A 50, 46 (2014). 10.1140/epja/i2014-14046-5 Google Scholar
  • 12) A. W.Steiner, M.Hempel, and T.Fischer, Astrophys. J. 774, 17 (2013). 10.1088/0004-637X/774/1/17 Google Scholar
  • 13) G.Shen, C. J.Horowitz, and S.Teige, Phys. Rev. C 83, 035802 (2011). 10.1103/PhysRevC.83.035802 Google Scholar
  • 14) G.Shen, C. J.Horowitz, and E.O’Connor, Phys. Rev. C 83, 065808 (2011). 10.1103/PhysRevC.83.065808 Google Scholar
  • 15) M.Oertel, A. F.Fantina, and J.Novak, Phys. Rev. C 85, 055806 (2012). 10.1103/PhysRevC.85.055806 Google Scholar
  • 16) F.Gulminelli, A.Raduta, M.Oertel, and J.Margueron, Phys. Rev. C 87, 055809 (2013). 10.1103/PhysRevC.87.055809 Google Scholar
  • 17) B.Peres, M.Oertel, and J.Novak, Phys. Rev. D 87, 043006 (2013). 10.1103/PhysRevD.87.043006 Google Scholar
  • 18) S.Banik, M.Hempel, and D.Bandyopadhyay, Astrophys. J. Suppl. Ser. 214, 22 (2014). 10.1088/0067-0049/214/2/22 Google Scholar
  • 19) C.Ishizuka, A.Ohnishi, K.Tsubakihara, K.Sumiyoshi, and S.Yamada, J. Phys. G Nucl. Phys. 35, 085201 (2008). 10.1088/0954-3899/35/8/085201 Google Scholar
  • 20) K.Nakazato, K.Sumiyoshi, and S.Yamada, Phys. Rev. D 77, 103006 (2008). 10.1103/PhysRevD.77.103006 Google Scholar
  • 21) K.Nakazato, K.Sumiyoshi, and S.Yamada, Astron. Astrophys. 558, A50 (2013). 10.1051/0004-6361/201322231 Google Scholar
  • 22) T.Fischer, T.Klähn, I.Sagert, M.Hempel, and D.Blaschke, Acta Phys. Pol. Suppl. 7, 153 (2014). Google Scholar
  • 23) I.Sagert, T.Fischer, M.Hempel, G.Pagliara, J.Schaffner-Bielich et al., Acta Phys. Pol. B 43, 741 (2012). 10.5506/APhysPolB.43.741 Google Scholar
  • 24) T.Fischer, I.Sagert, G.Pagliara, M.Hempel, J.Schaffner-Bielich et al., Astrophys. J. Suppl. Ser. 194, 39 (2011). 10.1088/0067-0049/194/2/39 Google Scholar
  • 25) I.Sagert, M.Hempel, G.Pagliara, J.Schaffner-Bielich, T.Fischer et al., Phys. Rev. Lett. 102, 081101 (2009). 10.1103/PhysRevLett.102.081101 Google Scholar
  • 26) G.Shen, C. J.Horowitz, and S.Teige, Phys. Rev. C 82, 015806 (2010). 10.1103/PhysRevC.82.015806 Google Scholar
  • 27) J. M.Lattimer and Y.Lim, Astrophys. J. 771, 51 (2013). 10.1088/0004-637X/771/1/51 Google Scholar
  • 28) J.Antoniadis, P. C. C.Freire, N.Wex, T. M.Tauris, R. S.Lynch et al., Science 340, 448 (2013). 10.1126/science.1233232 Google Scholar
  • 29) P. B.Demorest, T.Pennucci, S. M.Ransom, M. S. E.Roberts, and J. W. T.Hessels, Nature 467, 1081 (2010). 10.1038/nature09466 Google Scholar
  • 30) E.Fonseca, T. T.Pennucci, J. A.Ellis, I. H.Stairs, D. J.Nice et al., arXiv:1603.00545.Google Scholar
  • 31) M.Dutra, O.Lourenço, J. S.Sá Martins, A.Delfino, J. R.Stone et al., Phys. Rev. C 85, 035201 (2012). 10.1103/PhysRevC.85.035201 Google Scholar
  • 32) M.Dutra, O.Lourenço, S. S.Avancini, B. V.Carlson, A.Delfino et al., Phys. Rev. C 90, 055203 (2014). 10.1103/PhysRevC.90.055203 Google Scholar
  • 33) P.Danielewicz, R.Lacey, and W. G.Lynch, Science 298, 1592 (2002). 10.1126/science.1078070 Google Scholar
  • 34) I.Tews, T.Krüger, K.Hebeler, and A.Schwenk, Phys. Rev. Lett. 110, 032504 (2013). 10.1103/PhysRevLett.110.032504 Google Scholar
  • 35) K.Sumiyoshi and G.Röpke, Phys. Rev. C 77, 055804 (2008). 10.1103/PhysRevC.77.055804 Google Scholar
  • 36) E.O’Connor, D.Gazit, C. J.Horowitz, A.Schwenk, and N.Barnea, Phys. Rev. C 75, 055803 (2007). 10.1103/PhysRevC.75.055803 Google Scholar
  • 37) A.Arcones, G.Martínez-Pinedo, E.O’Connor, A.Schwenk, H.-T.Janka et al., Phys. Rev. C 78, 015806 (2008). 10.1103/PhysRevC.78.015806 Google Scholar
  • 38) S.Furusawa, H.Nagakura, K.Sumiyoshi, and S.Yamada, Astrophys. J. 774, 78 (2013). 10.1088/0004-637X/774/1/78 Google Scholar
  • 39) T.Fischer, G.Martínez-Pinedo, M.Hempel, L.Huther, G.Röpke et al., Eur. Phys. J.: Web Conf. 109, 06002 (2016).Google Scholar
  • 40) L.Qin, K.Hagel, R.Wada, J. B.Natowitz, S.Shlomo et al., Phys. Rev. Lett. 108, 172701 (2012). 10.1103/PhysRevLett.108.172701 Google Scholar
  • 41) M.Hempel, K.Hagel, J.Natowitz, G.Röpke, and S.Typel, Phys. Rev. C 91, 045805 (2015). 10.1103/PhysRevC.91.045805 Google Scholar
  • 42) S.Typel, G.Röpke, T.Klähn, D.Blaschke, and H. H.Wolter, Phys. Rev. C 81, 015803 (2010). 10.1103/PhysRevC.81.015803 Google Scholar
  • 43) G.Röpke, Phys. Rev. C 92, 054001 (2015). 10.1103/PhysRevC.92.054001 Google Scholar
  • 44) N.Buyukcizmeci, A. S.Botvina, I. N.Mishustin, R.Ogul, M.Hempel et al., Nucl. Phys. A 907, 13 (2013). 10.1016/j.nuclphysa.2013.03.010 Google Scholar
  • 45) A. S.Botvina and I. N.Mishustin, Nucl. Phys. A 843, 98 (2010). 10.1016/j.nuclphysa.2010.05.052 Google Scholar