- Full text:
- PDF (eReader) / PDF (Download) (303 kB)
We perform detailed nucleosynthesis calculations for two long-term, 2D simulations of core-collapse supernovae. We find that elements are produced up to Ru (Z = 44) and observe abundance patterns that are characteristic of a νp-process. One important characteristic of the long-term simulation is that there is still accretion of matter onto the proto-neutron star and unbinding of matter in some other regions at the time when the simulations stop (around 7s). Dividing the tracer particles into different bins according to their peak temperatures enables us to study and compare the nuclear compositions of these bins for the different simulations.
References
- 1) S. E.Woosley and T. A.Weaver, Astrophys. J. Suppl. Ser. 101, 181 (1995). 10.1086/192237 Google Scholar
- 2) F.-K.Thielemann, K.Nomoto, and M.-A.Hashimoto, Astrophys. J. 460, 408 (1996). 10.1086/176980 Google Scholar
- 3) K.Nakamura, T.Takiwaki, T.Kuroda, and K.Kotake, Publ. Astron. Soc. Jpn. 67, 107 (2015). 10.1093/pasj/psv073 Google Scholar
- 4) A.Perego, M.Hempel, C.Fröhlich et al., Astrophys. J. 806, 275 (2015). 10.1088/0004-637X/806/2/275 Google Scholar
- 5) K.Lodders, H.Palme, and H.-P.Gail, arXiv:0901.1149v2 [astro-ph.EP].Google Scholar
- 6) C.Fröhlich, P.Hauser, M.Liebendörfer et al., Astrophys. J. 637, 415 (2006). 10.1086/498224 Google Scholar