JPS Conf. Proc. 14, 020604 (2017) [3 pages]
Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016)
Nucleosynthesis in 2D Core-Collapse Supernova Long-Term Simulations of 11.2 and 17.0 \(\text{M}_{ \odot }\) Progenitors
1Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
2Institut für Kernphysik, Technische Universität Darmstadt, DE-64289 Darmstadt, Germany
3Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
4National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
5Department of Applied Physics, Fukuoka University, Fukuoka 814-0180, Japan
Received August 18, 2016

We perform detailed nucleosynthesis calculations for two long-term, 2D simulations of core-collapse supernovae. We find that elements are produced up to Ru (Z = 44) and observe abundance patterns that are characteristic of a νp-process. One important characteristic of the long-term simulation is that there is still accretion of matter onto the proto-neutron star and unbinding of matter in some other regions at the time when the simulations stop (around 7s). Dividing the tracer particles into different bins according to their peak temperatures enables us to study and compare the nuclear compositions of these bins for the different simulations.

©2017 The Physical Society of Japan


  • 1) S. E.Woosley and T. A.Weaver, Astrophys. J. Suppl. Ser. 101, 181 (1995). 10.1086/192237 Google Scholar
  • 2) F.-K.Thielemann, K.Nomoto, and M.-A.Hashimoto, Astrophys. J. 460, 408 (1996). 10.1086/176980 Google Scholar
  • 3) K.Nakamura, T.Takiwaki, T.Kuroda, and K.Kotake, Publ. Astron. Soc. Jpn. 67, 107 (2015). 10.1093/pasj/psv073 Google Scholar
  • 4) A.Perego, M.Hempel, C.Fröhlich et al., Astrophys. J. 806, 275 (2015). 10.1088/0004-637X/806/2/275 Google Scholar
  • 5) K.Lodders, H.Palme, and H.-P.Gail, arXiv:0901.1149v2 [astro-ph.EP].Google Scholar
  • 6) C.Fröhlich, P.Hauser, M.Liebendörfer et al., Astrophys. J. 637, 415 (2006). 10.1086/498224 Google Scholar