JPS Conf. Proc. 19, 011005 (2018) [9 pages]
Proceedings of 2016 International Conference on Ultra-High Energy Cosmic Rays (UHECR2016)
Cosmic Ray Physics with the KASCADE-Grande Observatory
1Institute of Physics and Mathematics, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
2Institut für Kernphysik, KIT - Karlsruher Institut für Technologie, Germany
3Departimento di Fisica, Università degli Studi di Torino, Italy
4Institut für Experimentelle Kernphysik, KIT - Karlsruher Institut für Technologie, Germany
5Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
6Osservatorio Astrofisico di Torino, INAF Torino, Italy
7Universidade de São Paulo, Instituto de Física de São Carlos, Brasil
8Fachbereich Physik, Universität Wuppertal, Germany
9Department of Physics, Siegen University, Germany
10Department of Astrophysics, Radboud University Nijmegen, The Netherlands
11National Centre for Nuclear Research, Department of Astrophysics, Lodz, Poland
12Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
13Department of Physics, University of Bucharest, Bucharest, Romania
14Now: Head of Division V at KIT - Karlsruher Institut für Technologie, Germany
15Now at: Istituto Nazionale di Ricerca Metrologica, INRIM, Torino, Italy
16Now at: DLR Oberpfaffenhofen, Germany
17Now at: University of Duisburg-Essen, Duisburg, Germany
Received April 17, 2017

The existence of a knee at a few PeV in the all-particle cosmic ray energy spectrum has been well established by several experiments but its physical origin has eluded researches for a long time. It is believed that keys to disentangle the mystery could be found in the spectrum and the composition of cosmic rays between 1 PeV and 1 EeV. A first detailed look into the elemental chemical abundances of cosmic rays in this energy regime was provided by both the KASCADE and the KASCADE-Grande experiments. Their measurements opened the door to a wealth of new data on the subject, which led to the discovery of new structures in the all-particle energy spectrum and the confirmation of knee-like features in the spectra of individual mass groups, as well as the observation of an unexpected ankle-like structure at around 100 PeV in the flux of the light component of cosmic rays. In this contribution, early findings with the KASCADE-Grande experiment will be reviewed and then a short update on the analyses currently performed with the data of the observatory will be presented.

©2018 The Physical Society of Japan

References

  • 1) W. D.Apel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 620, 202 (2010). 10.1016/j.nima.2010.03.147 Google Scholar
  • 2) T.Antoni et al., Nucl. Instrum. Methods Phys. Res., Sect. A 513, 490 (2003). 10.1016/S0168-9002(03)02076-X Google Scholar
  • 3) T.Antoni et al., Astropart. Phys. 24, 1 (2005). 10.1016/j.astropartphys.2005.04.001 Google Scholar
  • 4) W. D.Apel et al., Astropart. Phys. 31, 86 (2009). 10.1016/j.astropartphys.2008.11.008 Google Scholar
  • 5) B.Peters, Il Nuovo Cimento 22, 800 (1961). 10.1007/BF02783106 Google Scholar
  • 6) H.Falcke et al., Nature 435, 313 (2005). 10.1038/nature03614 Google Scholar
  • 7) R.Smida et al., Phys. Rev. Lett. 113, 221101 (2014). 10.1103/PhysRevLett.113.221101 Google Scholar
  • 8) W.Apel et al., Astropart. Phys. 36, 183 (2012). 10.1016/j.astropartphys.2012.05.023 Google Scholar
  • 9) A.Fasso et al., Report CERN-2005-10, INFN/TC-05/11, SLAC-R-773 (2005).Google Scholar
  • 10) S.Ostapchenko, Nucl. Phys. B (Proc. Suppl.) 151, 143 (2006) 10.1016/j.nuclphysbps.2005.07.026; Google ScholarS.Ostapchenko, Phys. Rev. D 74, 014026 (2006). 10.1103/PhysRevD.74.014026 Google Scholar
  • 11) W. D.Apel et al., Phys. Rev. Lett. 107, 171104 (2011). 10.1103/PhysRevLett.107.171104 Google Scholar
  • 12) M.Bertaina et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 359.Google Scholar
  • 13) D.Fuhrmann, Ph.D. thesis, University of Wuppertal (2012); Google ScholarW. D.Apel et al., Astropart. Phys. 47, 54 (2013). 10.1016/j.astropartphys.2013.06.004 Google Scholar
  • 14) W. D.Apel et al., Phys. Rev. D 87, 081101 (2013). 10.1103/PhysRevD.87.081101 Google Scholar
  • 15) W. D.Apel et al., Astropart. Phys. 34, 476 (2011). 10.1016/j.astropartphys.2010.10.016 Google Scholar
  • 16) S.Schoo et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 386.Google Scholar
  • 17) S. S.Ostapchenko, Phys. Rev. D 83, 014018 (2011). 10.1103/PhysRevD.83.014018 Google Scholar
  • 18) T.Pierog et al., Phys. Rev. C 92, 034906 (2015). 10.1103/PhysRevC.92.034906 Google Scholar
  • 19) W. D.Apel et al., Astropart. Phys. 77, 21 (2016). 10.1016/j.astropartphys.2015.12.002 Google Scholar
  • 20) T.Pierog et al., Report FZKA 7516, Forschungszentrum Karlsruhe 133 (2009).Google Scholar
  • 21) D.Kang et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 810.Google Scholar
  • 22) Z.Feng et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 823.Google Scholar
  • 23) M.Ahlers and K.Murase, Phys. Rev. D 90, 023010 (2014). 10.1103/PhysRevD.90.023010 Google Scholar
  • 24) S.Schoo et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 263.Google Scholar
  • 25) F.Riehn et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 558.Google Scholar
  • 26) J. C.Arteaga-Velázquez et al., ICRC 2015, The Netherlands, PoS(ICRC2015) 314.Google Scholar
  • 27) J.Hersil et al., Phys. Rev. Lett. 6, 22 (1961) 10.1103/PhysRevLett.6.22; Google ScholarD. M.Edge et al., J. Phys. A 6, 1612 (1973). 10.1088/0305-4470/6/10/019 Google Scholar
  • 28) A.Haungs et al., J. Phys.: Conf. Ser. 632, 012011 (2015). 10.1088/1742-6596/632/1/012011 Google Scholar