JPS Conf. Proc. 19, 011027 (2018) [8 pages]
Proceedings of 2016 International Conference on Ultra-High Energy Cosmic Rays (UHECR2016)
Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)
1Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
2Institute of Applied Physics ISU, Irkutsk, Russia
3Institute for Nuclear Research of RAN, Moscow, Russia
4Dipartimento di Fisica Generale Universiteta di Torino and INFN, Torino, Italy
5Max-Planck-Institute for Physics, Munich, Germany
6Institut für Experimentalphysik, University of Hamburg, Germany
7IZMIRAN, Moscow, Russia
8DESY, Zeuthen, Germany
9National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
10JINR, Dubna, Russia
11Novosibirsk State University, NSU, Novosibirsk, Russia
12Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
13ISS, Bucharest, Romania
Received April 26, 2017

The new TAIGA project is proposed to solve a number of fundamental problems of high- energy gamma astronomy, cosmic-ray and particle physics. The array will be located in the Tunka valley at the site of the Tunka-133 array. TAIGA will consist of wide-angle (FOV ~ 0.6 sr) non-imaging Cherenkov optical detectors (TAIGA-HiSCORE) covering an area of up to 5 km2, and up to 16 IACTs (Imaging Atmospheric Cherenkov Telescopes) (FOV ~ 10 × 10°) based on ~9 m2 mirrors and muon detectors with a total sensitive area of 2000 m2. The current TAIGA status is presented.

©2018 The Physical Society of Japan


  • 1) N. M.Budnev et al. (TAIGA Collaboration), J. Phys.: Conf. Ser. 718, 052006 (2016). 10.1088/1742-6596/718/5/052006 Google Scholar
  • 2) M.Tluczykont et al., Astropart. Phys. 56, 42 (2014). 10.1016/j.astropartphys.2014.03.004 Google Scholar
  • 3) S. F.Berezhnev et al. (Tunka Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 692, 98 (2012). 10.1016/j.nima.2011.12.091 Google Scholar
  • 4) M.Tluczykont et al., EPJ Web of Conf. 136, 03008 (2017).Google Scholar
  • 5) V.Prosin et al. (Tunka Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 756, 94 (2014). 10.1016/j.nima.2013.09.018 Google Scholar
  • 6) N.Budnev et al., Astropart. Phys. 50–52, 18 (2013). 10.1016/j.astropartphys.2013.09.006 Google Scholar
  • 7) A. D.Panov et al., Bull. Russ. Acad. Sci. Phys. 73, 564 (2009), arXiv:1101.3246.Google Scholar
  • 8) A.Panov et al. Proc. 25 ECRS, 2016.Google Scholar
  • 9) L.A.Kuzmichev et al. (TAIGA Collaboration), To be published in proceedings of ISVHECRI-2016.Google Scholar
  • 10) I. I.Yashin et al., Bull. Russ. Acad. Sci., Physics 79, 392 (2015). 10.3103/S1062873815030442 Google Scholar
  • 11) N. M.Budnev et al., MSU Bulletin 70 , 160 (2015).Google Scholar
  • 12) Web [].Google Scholar
  • 13) D.Hampf et al., Nucl. Instrum. Methods Phys. Res., Sect. A 712, 137 (2013). 10.1016/j.nima.2013.02.016 Google Scholar