JPS Conf. Proc. 19, 011031 (2018) [7 pages]
Proceedings of 2016 International Conference on Ultra-High Energy Cosmic Rays (UHECR2016)
Radio Detection of Cosmic Rays–Achievements and Future Potential
Karlsruhe Institute of Technology, IKP, P. O. Box 3640, 76021 Karlsruhe, Germany
Received April 18, 2017

When modern efforts for radio detection of cosmic rays started about a decade ago, hopes were high but the true potential was unknown. Since then, we have achieved a detailed understanding of the radio emission physics and have consequently succeeded in developing sophisticated detection schemes and analysis approaches. In particular, we have demonstrated that the important air-shower parameters arrival direction, particle energy and depth of shower maximum can be reconstructed reliably from radio measurements, with a precision that is comparable with that of other detection techniques. At the same time, limitations inherent to the radio-emission mechanisms have become apparent. In this article, I shortly review the capabilities of radio detection in the very high-frequency band, and discuss the potential for future application in existing and new experiments for cosmic-ray detection.

©2018 The Physical Society of Japan

References

  • 1) J. V.Jelley et al., Nature 205, 327 (1965). 10.1038/205327a0 Google Scholar
  • 2) H. R.Allan, Prog. Element. Part. Cos. Ray Phys. 10, 171 (1971).Google Scholar
  • 3) T.Huege, Phys. Rep. 620, 1 (2016). 10.1016/j.physrep.2016.02.001 Google Scholar
  • 4) F. G.Schröder, Prog. Part. Nucl. Phys. 93, 1 (2017). 10.1016/j.ppnp.2016.12.002 Google Scholar
  • 5) T.Huege, M.Ludwig, and C. W.James, AIP Conf. Proc. 1535, 128 (2013). 10.1063/1.4807534 Google Scholar
  • 6) J.Alvarez-Muñiz, W. R.Carvalho,Jr., and E.Zas, Astropart. Phys. 35, 325 (2012). 10.1016/j.astropartphys.2011.10.005 Google Scholar
  • 7) S.Buitink et al., Nature 531, 70 (2016). 10.1038/nature16976 Google Scholar
  • 8) W. D.Apel et al., Astropart. Phys. 75, 72 (2016). 10.1016/j.astropartphys.2015.09.002 Google Scholar
  • 9) P. A.Bezyazeekov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 802, 89 (2015). 10.1016/j.nima.2015.08.061 Google Scholar
  • 10) K.Belov et al., Phys. Rev. Lett. 116, 141103 (2016). 10.1103/PhysRevLett.116.141103 Google Scholar
  • 11) O.Scholten, K.Werner, and F.Rusydi, Astropart. Phys. 29, 94 (2008). 10.1016/j.astropartphys.2007.11.012 Google Scholar
  • 12) A.Aab et al., Phys. Rev. Lett. 116, 241101 (2016). 10.1103/PhysRevLett.116.241101 Google Scholar
  • 13) A.Aab et al., J. Instrum. submitted (2017), arXiv:1702.01392.Google Scholar
  • 14) C.Glaser et al., J. Cosmology Astropart. Phys. 09, 24 (2016). 10.1088/1475-7516/2016/09/024 Google Scholar
  • 15) A.Aab et al., Phys. Rev. D 93, 122005 (2016). 10.1103/PhysRevD.93.122005 Google Scholar
  • 16) W. D.Apel et al., Phys. Rev. D 90, 062001 (2014). 10.1103/PhysRevD.90.062001 Google Scholar
  • 17) P. A.Bezyazeekov et al., J. Cosmology Astropart. Phys. 01, 052 (2016). 10.1088/1475-7516/2016/01/052 Google Scholar
  • 18) P.Schellart et al., Phys. Rev. Lett. 114, 165001 (2015). 10.1103/PhysRevLett.114.165001 Google Scholar
  • 19) A.Corstanje et al., Astropart. Phys. 61, 22 (2015). 10.1016/j.astropartphys.2014.06.001 Google Scholar
  • 20) K.Link, Ph.D. thesis, Karlsruhe Institute of Technology (2016), DOI: 10.5445/IR/1000062597.Google Scholar
  • 21) T.Huege, R.Ulrich, and R.Engel, Astropart. Phys. 30, 96 (2008). 10.1016/j.astropartphys.2008.07.003 Google Scholar
  • 22) F.Gaté for the Pierre Auger Collaboration, EPJ Web Conf. 135, 01007 (2017). 10.1051/epjconf/201713501007 Google Scholar
  • 23) A.Zilles, S.Buitink, and T.Huege, EPJ Web Conf. 135, 02004 (2017). 10.1051/epjconf/201713502004 Google Scholar
  • 24) F. G.Schröder et al., JPS Conf. Proc. 9, 010008 (2016).Google Scholar
  • 25) O.Kambeitz for the Pierre Auger Collaboration, EPJ Web Conf. 135, 01015 (2017). 10.1051/epjconf/201713501015 Google Scholar
  • 26) T.Huege and A.Haungs, JPS Conf. Proc. 09, 010018 (2016).Google Scholar
  • 27) International Telecommunication Union, Recommendations and reports of the CCIR 670 (1982).Google Scholar
  • 28) A.Nelles et al., Astropart. Phys. 65, 11 (2015). 10.1016/j.astropartphys.2014.11.006 Google Scholar
  • 29) S.Hoover et al., Phys. Rev. Lett. 105, 151101 (2010). 10.1103/PhysRevLett.105.151101 Google Scholar
  • 30) S. W.Barwick et al., Astropart. Phys. 90, 50 (2017). 10.1016/j.astropartphys.2017.02.003 Google Scholar
  • 31) V.Verzi for the Pierre Auger Collaboration, Proc. 33rd ICRC, 2013, #0928.Google Scholar
  • 32) W. D.Apel et al., Phys. Lett. B 763, 179 (2016). 10.1016/j.physletb.2016.10.031 Google Scholar
  • 33) R.Engel for the Pierre Auger Collaboration, PoS ICRC2015, 686 (2015).Google Scholar