JPS Conf. Proc. 21, 011052 (2018) [8 pages]
Proceedings of the 14th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2017)
Introduction and a Quick Look at MUESR, the Magnetic Structure and mUon Embedding Site Refinement Suite
1CINECA, Casalecchio di Reno 6/3, 40033 Bologna, Italy
2Dipartimento di Scienze Matematiche, Fisiche e Informatiche, University of Parma, Parco delle Scienze 7A, 43124 Parma, Italy
Received June 25, 2017

The estimation of the magnetic field generated at a given point by magnetic dipoles is an undergraduate exercise. However, under certain approximation, this is all that is needed to evaluate the local field at the muon site once the interstitial position of the muon in the unit cell is known. The development of an application to specifically solve this problem may therefore seem an excessive effort. At the same time, the lack of a general solution leads to the development of small ad hoc codes that are generally rewritten or re-adapted for different experiments and are poorly optimized. This and other motivations led to the development of MuESR, a python+C tool to perform dipolar field simulations. In this manuscript we will describe the tool, its features and its development strategies.

©2018 The Physical Society of Japan

References

  • 1) F. R.Foronda, F.Lang, J. S.Möller, T.Lancaster, A. T.Boothroyd, F. L.Pratt, S. R.Giblin, D.Prabhakaran, and S. J.Blundell, Phys. Rev. Lett. 114, 017602 (2015). 10.1103/PhysRevLett.114.017602 Google Scholar
  • 2) J. S.Möller, D.Ceresoli, T.Lancaster, N.Marzari, and S.J.Blundell, Phys. Rev. B 87, 121108(R) (2013). 10.1103/PhysRevB.87.121108 Google Scholar
  • 3) C. G.Van de Walle, Phys. Rev. Lett. 64, 669 (1990). 10.1103/PhysRevLett.64.669 Google Scholar
  • 4) N.Martin, M.Deutsch, F.Bert, D.Andreica, A.Amato, P.Bonfà, R.De Renzi, U. K.Rößler, P.Bonville, L. N.Fomicheva, A. V.Tsvyashchencko, and I.Mirebeau, Phys. Rev. B 93, 174405 (2016). 10.1103/PhysRevB.93.174405 Google Scholar
  • 5) P.Bonfà, F.Sartori, and R.De Renzi, J. Phys. Chem. C 119, 4278 (2015). 10.1021/jp5125876 Google Scholar
  • 6) F.Bernardini, P.Bonfà, S.Massidda, and R.De Renzi, Phys. Rev. B 87, 115148 (2013). 10.1103/PhysRevB.87.115148 Google Scholar
  • 7) J. S.Möller, P.Bonfà, D.Ceresoli, F.Bernardini, S. J.Blundell, T.Lancaster, R.De Renzi, N.Marzari, I.Watanabe, and S.Sulaiman, Phys. Scr. 88 (2013). Google Scholar
  • 8) G.Prando, P.Bonfà, G.Profeta, R.Khasanov, F.Bernardini, M.Mazzani, E. M.Brüning, A.Pal, V. P. S.Awana, H.-J.Grafe, B.Büchner, R.De Renzi, P.Carretta, and S.Sanna, Phys. Rev. B 87, 064401 (2013). 10.1103/PhysRevB.87.064401 Google Scholar
  • 9) S. J.Blundell, A. J.Steele, T.Lancaster, J. D.Wright, and F. L.Pratt, Phys. Procedia 30, 113 (2012). 12th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2011). 10.1016/j.phpro.2012.04.052 Google Scholar
  • 10) A.Yaouanc and P.Dalmas de Réotier, Muon Spin Rotation Relaxation and Resonance: Applications to Condensed Matter (Oxford University Press, Oxford, U.K., 2011).Google Scholar
  • 11) J. Rodriguez-Carvajal, Fullprof: a program for rietveld refinement and pattern matching analysis. In satellite meeting on powder diffraction of the XV congress of the IUCr, volume 127. Toulouse, France, (1990).Google Scholar
  • 12) P. F.Dubois, K.Hinsen, and J.Hugunin, Comput. Phys. 10 (1996).Google Scholar
  • 13) D.Ascher, P. F.Dubois, K.Hinsen, J.Hugunin, and T.Oliphant, Numerical Python (Lawrence Livermore National Laboratory, Livermore, CA, 1999) ucrl-ma-128569 edition.Google Scholar
  • 14) P.Bonfà, I. J.Onuorah, and R.De Renzi, MuESR. http://www.github.com/bonfus/muesr, (2017). [Online; accessed 19-June-2017].Google Scholar
  • 15) P.Bonfà, I.John Onuorah, and R.De Renzi, MuESR Docs. http://muesr.readthedocs.io, (2017). [Online; accessed 19-June-2017].Google Scholar
  • 16) A. H.Larsen, J. J.Mortensen, J.Blomqvist, I. E.Castelli, R.Christensen, M.Dułak, J.Friis, M. N.Groves, B.Hammer, C.Hargus, E. D.Hermes, P. C.Jennings, P. B.Jensen, J.Kermode, J. R.Kitchin, E. L.Kolsbjerg, J.Kubal, K.Kaasbjerg, S.Lysgaard, J. B.Maronsson, T.Maxson, T.Olsen, L.Pastewka, A.Peterson, C.Rostgaard, J.Schiøtz, O.Schütt, M.Strange, K. S.Thygesen, T.Vegge, L.Vilhelmsen, M.Walter, Z.Zeng, and K. W.Jacobsen, J. Phys.: Condens. Matter 29, 273002 (2017). 10.1088/1361-648X/aa680e Google Scholar
  • 17) A.Kokalj, Comput. Mater. Sci. 28, 155 (2003) Proc. Symp. Software Development for Process and Materials Design. 10.1016/S0927-0256(03)00104-6 Google Scholar
  • 18) A.Togo, Spglib. https://atztogo.github.io/spglib/, (2017). [Online; accessed 19-June-2017].Google Scholar
  • 19) J.Sugiyama, H.Nozaki, M.Harada, K.Kamazawa, O.Ofer, M.Månsson, J. H.Brewer, E. J.Ansaldo, K. H.Chow, Y.Ikedo, Y.Miyake, K.Ohishi, I.Watanabe, G.Kobayashi, and R.Kanno, Phys. Rev. B 84, 054430 (2011). 10.1103/PhysRevB.84.054430 Google Scholar
  • 20) P.Dalmas de Réotier, A.Maisuradze, A.Yaouanc, B.Roessli, A.Amato, D.Andreica, and G.Lapertot, Phys. Rev. B 95, 180403 (2017). 10.1103/PhysRevB.95.180403 Google Scholar
  • 21) A.Amato, P.Dalmas de Réotier, D.Andreica, A.Yaouanc, A.Suter, G.Lapertot, I. M.Pop, E.Morenzoni, P.Bonfà, F.Bernardini, and R.De Renzi, Phys. Rev. B 89, 184425 (2014). 10.1103/PhysRevB.89.184425 Google Scholar
  • 22) M.Herak, A.Zorko, M.Pregelj, O.Zaharko, G.Posnjak, Z.Jagličić, A.Potočnik, H.Luetkens, J.van Tol, A.Ozarowski, H.Berger, and D.Arčon, Phys. Rev. B 87, 104413 (2013). 10.1103/PhysRevB.87.104413 Google Scholar
  • 23) R.Becker and H.Berger, Acta Crystallogr., Sect. A 62, s256 (2006). 10.1107/S010876730609670X Google Scholar
  • 24) K.Momma and F.Izumi, J. Appl. Crystallogr. 41, 653 (2008). 10.1107/S0021889808012016 Google Scholar