Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 28, 081004 (2020) [6 pages]
Proceedings of the 14th International Workshop on Spallation Materials Technology
Mitigation of Cavitation Damage in J-PARC Mercury Target Vessel
Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
Received March 21, 2019

The target vessel, which enclosing liquid mercury, for the pulsed spallation neutron source at the J-PARC is severely damaged by cavitation caused by proton beam-induced pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the target vessel. In addition, gas microbubbles are injected into the mercury to suppress the pressure waves. The narrow channel disturbs the growth of cavitation bubbles due to the pressure gradient. After finishing service operation, the front end of the target vessel was cut out, allowing us to inspect the effect of these cavitation damage mitigation technologies on the interior surface. The damage depth of the cutout specimens was quantitatively investigated by the replica method. The results showed that the erosion depth due to cavitation in the narrow channel is clearly smaller than on the wall facing mercury with injecting gas microbubbles.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) H.Takada, K.Haga, M.Teshigawara, T.Aso, S.Meigo, H.Kogawa, T.Naoe, T.Wakui, M.Ooi, M.Harada, and M.Futakawa, Quantum Beam Sci. 1, 8 (2017). 10.3390/qubs1020008 Google Scholar
  • 2) M.Futakawa, H.Kogawa, R.Hino, H.Date, and H.Takeishi, Int. J. Impact Eng. 28, 123 (2003). 10.1016/S0734-743X(02)00054-4 Google Scholar
  • 3) K.Okita, S.Takagi, and Y.Matsumoto, J. Fluid Sci. Technol. 3, 116 (2008). 10.1299/jfst.3.116 Google Scholar
  • 4) H.Kogawa, T.Naoe, H.Kyotoh, K.Haga, H.Kinoshita, and M.Futakawa, J. Nucl. Sci. Technol. 52, 1461 (2015). 10.1080/00223131.2015.1009188 Google Scholar
  • 5) H.Kogawa, T.Naoe, M.Futakawa, K.Haga, T.Wakui, M.Harada, and H.Takada, J. Nucl. Sci. Technol. 54, 733 (2017). 10.1080/00223131.2017.1309302 Google Scholar
  • 6) T.Naoe, T.Wakui, H.Kinoshita, H.Kogawa, K.Haga, M.Harada, H.Takada, and M.Futakawa, J. Nucl. Mater. 506, 35 (2018). 10.1016/j.jnucmat.2017.10.044 Google Scholar
  • 7) T.Naoe, H.Kogawa, T.Wakui, K.Haga, M.Teshigawara, H.Kinoshita, H.Takada, and M.Futakawa, J. Nucl. Mater. 468, 313 (2016). 10.1016/j.jnucmat.2015.08.035 Google Scholar
  • 8) B.Riemer, D.McClintock, S.Kaminskas, and A.Abdou, J. Nucl. Mater. 450, 183 (2014). 10.1016/j.jnucmat.2013.10.057 Google Scholar
  • 9) H.Takada and K.Haga, in this proceedings.Google Scholar
  • 10) H.Kinoshita, K.Haga, M.Seki, T.Suzuki, M.Ito, Y.Kasugai, T.Wakui, H.Kogawa, T.Naoe, K.Hanano, M.Teshigawara, F.Maekawa, S.Sakamoto, and M.Futakawa, Proc. 20th Int. Collaboration on Advanced Neutron Sources, 2012, Vol. 1, p. 559.Google Scholar
  • 11) K.Haga, T.Naoe, T.Wakui, H.Kogawa, H.Kinoshita, and M.Futakawa, JPS Conf. Proc. 8, 051008 (2015). 10.7566/JPSCP.8.051008[Abstract] Google Scholar
  • 12) M.Futakawa, H.Kogawa, S.Hasegawa, T.Naoe, M.Ida, K.Haga, T.Wakui, N.Tanaka, Y.Matsumoto, and Y.Ikeda, J. Nucl. Sci. Technol. 45, 1041 (2008). 10.1080/18811248.2008.9711890 Google Scholar
  • 13) T.Naoe, H.Kogawa, N.Tanaka, and M.Futakawa, Adv. Exp. Mech., under review.Google Scholar