JPS Conf. Proc. 29, 015004 (2020) [6 pages]
Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena
NMR Studies of Structural Stabilization by Site-Selective Element Substitution in 1-2-20 System
1Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
2Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
3Department of Physics, Yokohama National University, Yokohama 240-8501, Japan
Received September 18, 2019

We report 119Sn NMR studies on LaRu2Sn2Zn18. LaRu2Sn2Zn18 was synthesized by replacing a part of Zn of LaRu2Zn20 with Sn. To clarify the substitution site of Sn in three batches of samples grown under different conditions, 119Sn NMR spectra of the powder samples were measured. A significant difference in the NMR spectral shape and linewidth was observed depending on the growing conditions. We also measured the NMR spectrum of single-crystal and found that Sn was substituted only at the 16c site in the best sample. Besides, the analysis of the spectral shape considering the local symmetry around the Sn nucleus suggested the possibility of slight strain in the crystal, which might be due to the incomplete Sn substitution at the 16c site.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) T.Nasch, W.Jeitschko, and U. C.Rodewald, Z. Naturforsch. B 52, 1023 (1997). 10.1515/znb-1997-0901 Google Scholar
  • 2) T.Onimaru, K. T.Matsumoto, Y. F.Inoue, K.Umeo, T.Sakakibara, Y.Karaki, M.Kubota, and T.Takabatake, Phys. Rev. Lett. 106, 177001 (2011). 10.1103/PhysRevLett.106.177001 Google Scholar
  • 3) T.Onimaru, N.Nagasawa, K. T.Matsumoto, K.Wakiya, K.Umeo, S.Kittaka, T.Sakakibara, Y.Matsushita, and T.Takabatake, Phys. Rev. B 86, 184426 (2012). 10.1103/PhysRevB.86.184426 Google Scholar
  • 4) A.Sakai and S.Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011). 10.1143/JPSJ.80.063701[Abstract] Google Scholar
  • 5) K.Matsubayashi, T.Tanaka, A.Sakai, S.Nakatsuji, Y.Kubo, and Y.Uwatoko, Phys. Rev. Lett. 109, 187004 (2012). 10.1103/PhysRevLett.109.187004 Google Scholar
  • 6) M.Tsujimoto, Y.Matsumoto, T.Tomita, A.Sakai, and S.Nakatsuji, Phys. Rev. Lett. 113, 267001 (2014). 10.1103/PhysRevLett.113.267001 Google Scholar
  • 7) T.Onimaru, K. T.Matsumoto, Y. F.Inoue, K.Umeo, Y.Saiga, Y.Matsushita, R.Tamura, K.Nishimoto, I.Ishii, T.Suzuki, and T.Takabatake, J. Phys. Soc. Jpn. 79, 033704 (2010). 10.1143/JPSJ.79.033704[Abstract] Google Scholar
  • 8) T.Hasegawa, N.Ogita, and M.Udagawa, J. Phys.: Conf. Ser. 391, 012016 (2012). 10.1088/1742-6596/391/1/012016 Google Scholar
  • 9) K.Wakiya, T.Onimaru, S.Tsutsui, K. T.Matsumoto, N.Nagasawa, A. Q. R.Baron, T.Hasegawa, N.Ogita, M.Udagawa, and T.Takabatake, JPS Conf. Proc. 3, 011068 (2014). 10.7566/JPSCP.3.011068[Abstract] Google Scholar
  • 10) K.Wakiya, T.Onimaru, S.Tsutsui, K. T.Matsumoto, N.Nagasawa, A. Q. R.Baron, T.Hasegawa, N.Ogita, M.Udagawa, and T.Takabatake, J. Phys.: Conf. Ser. 592, 012024 (2015). 10.1088/1742-6596/592/1/012024 Google Scholar
  • 11) K.Wakiya, T.Onimaru, S.Tsutsui, T.Hasegawa, K. T.Matsumoto, N.Nagasawa, A. Q. R.Baron, N.Ogita, M.Udagawa, and T.Takabatake, Phys. Rev. B 93, 064105 (2016). 10.1103/PhysRevB.93.064105 Google Scholar
  • 12) Y.Isikawa, T.Mizushima, J.Ejiri, S.Kitayama, K.Kumagai, T.Kuwai, P.Bordet, and P.Lejay, J. Phys. Soc. Jpn. 84, 074707 (2015). 10.7566/JPSJ.84.074707[Abstract] Google Scholar
  • 13) K.Wakiya, Y.Sugiyama, M.Kishimoto, T. D.Matsuda, Y.Aoki, M.Uehara, J.Gouchi, Y.Uwatoko, and I.Umehara, J. Phys. Soc. Jpn. 87, 094706 (2018). 10.7566/JPSJ.87.094706[Abstract] Google Scholar
  • 14) K.Wakiya, Y.Sugiyama, T.Komagata, M.Uehara, H.Sato, J.Gouchi, Y.Uwatoko, and I.Umehara, J. Alloys Compd. 797, 309 (2019). 10.1016/j.jallcom.2019.04.345 Google Scholar