JPS Conf. Proc. 3, 012016 (2014) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013)
Anomalous Microwave Surface Resistance of CeCu6
1Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
2Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany
3Institut für Festkörperphysik, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
4Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
Received October 1, 2013

We present surface resistance measurements of the archetypical heavy-fermion compound CeCu6 for frequencies between 3.7 and 18 GHz and temperatures from 1.2 to 6 K. The measurements were performed with superconducting stripline resonators that allow simultaneous measurements at multiple frequencies. The surface resistance of CeCu6 exhibits a pronounced decrease below 3 K, in consistence with dc resistivity. The low-temperature frequency dependence of the surface resistance follows a power law with exponent 2/3. While for conventional metals this would be consistent with the anomalous skin effect, we discuss the present situation of a heavy-fermion metal, where this frequency dependence might instead stem from the influence of electronic correlations.

©2014 The Physical Society of Japan

References

  • 1) D. N.Basov, R. D.Averitt, D.van der Marel, M.Dressel, and K.Haule, Rev. Mod. Phys. 83, 471 (2011). 10.1103/RevModPhys.83.471 Google Scholar
  • 2) M.Scheffler, K.Schlegel, C.Clauss, D.Hafner, C.Fella, M.Dressel, M.Jourdan, J.Sichelschmidt, C.Krellner, C.Geibel, and F.Steglich, Phys. Status Solidi B 250, 439 (2013). 10.1002/pssb.201200925 Google Scholar
  • 3) S. V.Dordevic, D. N.Basov, N. R.Dilley, E. D.Bauer, and M. B.Maple, Phys. Rev. Lett. 86, 684 (2001). 10.1103/PhysRevLett.86.684 Google Scholar
  • 4) H.Okamura, T.Watanabe, M.Matsunami, T.Nishihara, N.Tsujii, T.Ebihara, H.Sugawara, H.Sato, Y.Ōnuki, Y.Isikawa, T.Takabatake, and T.Nanba, J. Phys. Soc. Jpn. 76, 023703 (2007). 10.1143/JPSJ.76.023703[Abstract] Google Scholar
  • 5) S.Kimura, T.Iizuka, and Y.Kwon, J. Phys. Soc. Jpn. 78, 013710 (2009). 10.1143/JPSJ.78.013710[Abstract] Google Scholar
  • 6) J.Sichelschmidt, A.Herzog, H. S.Jeevan, C.Geibel, F.Steglich, T.Iizuka, and S.Kimura, J. Phys.: Condens. Matter 25, 065602 (2013). 10.1088/0953-8984/25/6/065602 Google Scholar
  • 7) M.Dressel and M.Scheffler, Ann. Phys. (Leipzig) 15, 535 (2006). 10.1002/andp.200510198 Google Scholar
  • 8) A. J.Millis and P. A.Lee, Phys. Rev. B 35, 3394 (1987). 10.1103/PhysRevB.35.3394 Google Scholar
  • 9) M.Scheffler, M.Dressel, M.Jourdan, and H.Adrian, Nature 438, 1135 (2005). 10.1038/nature04232 Google Scholar
  • 10) M.Scheffler, M.Dressel, M.Jourdan, and H.Adrian, Physica B 378–380, 993 (2006). 10.1016/j.physb.2006.01.381 Google Scholar
  • 11) K.Steinberg, M.Scheffler, and M.Dressel, Rev. Sci. Instrum. 83, 024704 (2012). 10.1063/1.3680576 Google Scholar
  • 12) M.Scheffler, M.Dressel, and M.Jourdan, Eur. Phys. J. B 74, 331 (2010). 10.1140/epjb/e2010-00085-6 Google Scholar
  • 13) B. C.Webb, A. J.Sievers, and T.Mihalisin, Phys. Rev. Lett. 57, 1951 (1986). 10.1103/PhysRevLett.57.1951 Google Scholar
  • 14) W. P.Beyermann, G.Grüner, Y.Dalichaouch, and M. B.Maple, Phys. Rev. Lett. 60, 216 (1988). 10.1103/PhysRevLett.60.216 Google Scholar
  • 15) A. M.Awasthi, L.Degiorgi, G.Grüner, Y.Dalichaouch, and M. B.Maple, Phys. Rev. B 48, 10692 (1993). 10.1103/PhysRevB.48.10692 Google Scholar
  • 16) L.Degiorgi, St.Thieme, H. R.Ott, M.Dressel, G.Grüner, Y.Dalichaouch, M. B.Maple, Z.Fisk, C.Geibel, and F.Steglich, Z. Phys. B 102, 367 (1997). 10.1007/s002570050300 Google Scholar
  • 17) P.Tran, S.Donovan, and G.Grüner, Phys. Rev. B 65, 205102 (2002). 10.1103/PhysRevB.65.205102 Google Scholar
  • 18) R. N.Gurzhi, Sov. Phys. JETP 8, 673 (1959).Google Scholar
  • 19) D. L.Maslov and A. V.Chubukov, Phys. Rev. B 86, 155137 (2012). 10.1103/PhysRevB.86.155137 Google Scholar
  • 20) C.Berthod, J.Mravlje, X.Deng, R.Žitko, D.van der Marel, and A.Georges, Phys. Rev. B 87, 115109 (2013). 10.1103/PhysRevB.87.115109 Google Scholar
  • 21) G. R.Stewart, Z.Fisk, and M. S.Wire, Phys. Rev. B 30, 482 (1984). 10.1103/PhysRevB.30.482 Google Scholar
  • 22) Y.Ōnuki and T.Komatsubara, J. Magn. Magn. Mater. 63–64, 281 (1987). 10.1016/0304-8853(87)90587-7 Google Scholar
  • 23) H. v.Löhneysen, J. Phys.: Condens. Matter 8, 9689 (1996). 10.1088/0953-8984/8/48/003 Google Scholar
  • 24) H. R.Ott, H.Rudigier, Z.Fisk, J. O.Willis, and G. R.Stewart, Solid State Commun. 53, 235 (1985). 10.1016/0038-1098(85)90042-0 Google Scholar
  • 25) A.Amato, D.Jaccard, E.Walker, and J.Flouquet, Solid State Commun. 55, 1131 (1985). 10.1016/0038-1098(85)90150-4 Google Scholar
  • 26) H. v.Löhneysen, Physica B 206–207, 101 (1995). 10.1016/0921-4526(94)00377-8 Google Scholar
  • 27) H. v.Löhneysen, S.Mock, A.Neubert, T.Pietrus, A.Rosch, A.Schröder, O.Stockert, and U.Tutsch, J. Magn. Magn. Mater. 177–181, 12 (1998). 10.1016/S0304-8853(97)00807-X Google Scholar
  • 28) H. v.Löhneysen, A.Rosch, M.Vojta, and P.Wölfle, Rev. Mod. Phys. 79, 1015 (2007). 10.1103/RevModPhys.79.1015 Google Scholar
  • 29) P.Gegenwart, Q.Si, and F.Steglich, Nat. Phys. 4, 186 (2008). 10.1038/nphys892 Google Scholar
  • 30) A.Schröder, G.Aeppli, R.Coldea, M.Adams, O.Stockert, H. v.Löhneysen, E.Bucher, R.Ramazashvili, and P.Coleman, Nature 407, 351 (2000). 10.1038/35030039 Google Scholar
  • 31) M. S.DiIorio, A. C.Anderson, and B.-Y.Tsaur, Phys. Rev. B 38, 7019 (1988). 10.1103/PhysRevB.38.7019 Google Scholar
  • 32) M.Scheffler, C.Fella, and M.Dressel, J. Phys.: Conf. Ser. 400, 052031 (2012). 10.1088/1742-6596/400/5/052031 Google Scholar
  • 33) D.Hafner, M.Dressel, and M.Scheffler, Rev. Sci. Instrum. 85, 014702 (2014). 10.1063/1.4856475 Google Scholar
  • 34) F.Marabelli and P.Wachter, Phys. Rev. B 42, 3307 (1990). 10.1103/PhysRevB.42.3307 Google Scholar
  • 35) H. A.Wheeler, Proc. Inst. Radio Eng. 30, 412 (1942). 10.1109/JRPROC.1942.232015 Google Scholar
  • 36) H. A.Wheeler, IEEE Trans. Microwave Theory Tech. 26, 866 (1978). 10.1109/TMTT.1978.1129505 Google Scholar
  • 37) J.Krupka, K.Derzakowski, M.Tobar, J.Hartnett, and R. G.Geyer, Meas. Sci. Technol. 10, 387 (1999). 10.1088/0957-0233/10/5/308 Google Scholar
  • 38) D. E.Oates, A. C.Anderson, C. C.Chin, J. S.Derov, G.Dresselhaus, and M. S.Dresselhaus, Phys. Rev. B 43, 7655 (1991). 10.1103/PhysRevB.43.7655 Google Scholar
  • 39) M.Scheffler and M.Dressel, Rev. Sci. Instrum. 76, 074702 (2005). 10.1063/1.1947881 Google Scholar
  • 40) T.Penney, F. P.Milliken, S.von Molnar, F.Holtzberg, and Z.Fisk, Phys. Rev. B 34, 5959 (1986). 10.1103/PhysRevB.34.5959 Google Scholar
  • 41) M.Dressel and G.Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, U.K., 2002). Google Scholar
  • 42) J. M.Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, U.K., 1972). Google Scholar
  • 43) A. B.Pippard, Proc. R. Soc. London, Ser. A 191, 385 (1947). 10.1098/rspa.1947.0122 Google Scholar
  • 44) T.Ebihara, I.Umehara, A. K.Albessard, K.Satoh, and Y.Onuki, J. Phys. Soc. Jpn. 61, 1473 (1992). 10.1143/JPSJ.61.1473[Abstract] Google Scholar
  • 45) Y.Kasahara, Y.Nakajima, K.Izawa, Y.Matsuda, K.Behnia, H.Shishido, R.Settai, and Y.Onuki, Phys. Rev. B 72, 214515 (2005). 10.1103/PhysRevB.72.214515 Google Scholar