- Full text:
- PDF (eReader) / PDF (Download) (1809 kB)
We perform first-principles calculations of multiferroic Ca3CoMnO6 and evaluate the exchange coupling constants using the Green’s function method. We clarify the effect of intra-chain and inter-chain exchange interactions on magnetic stability. We find that inter-chain exchange coupling constants are antiferromagnetic and that there are geometrical frustrations in the triangular lattices of magnetic chains in Ca3CoMnO6. The magnetic transition temperature is evaluated using effective Hamiltonian with calculated exchange coupling constants. We obtain the transition temperature 5.80 K. The value has the same order as that of experimentally observed.
References
- 1) T.Kimura, T.Goto, H.Shintani, K.Ishizaka, T.Arima, and Y.Tokura, Nature 426, 55 (2003). 10.1038/nature02018 Google Scholar
- 2) K.Taniguchi, N.Abe, T.Takenobu, Y.Iwasa, and T.Arima, Phys. Rev. Lett. 97, 097203 (2006). 10.1103/PhysRevLett.97.097203 Google Scholar
- 3) G.Lawes, A. B.Harris, T.Kimura, N.Rogado, R. J.Cava, A.Aharony, O.Entin-Wohlman, T.Yildirim, M.Kenzelmann, C.Broholm, and A. P.Ramirez, Phys. Rev. Lett. 95, 087205 (2005). 10.1103/PhysRevLett.95.087205 Google Scholar
- 4) S.Park, Y.Choi, C. L.Zhang, and S.-W.Cheong, Phys. Rev. Lett. 98, 057601 (2007). 10.1103/PhysRevLett.98.057601 Google Scholar
- 5) Y. J.Choi, H. T.Yi, S.Lee, Q.Huang, V.Kiryukhin, and S.-W.Cheong, Phys. Rev. Lett. 100, 047601 (2008). 10.1103/PhysRevLett.100.047601 Google Scholar
- 6) H.Wu, T.Burnus, Z.Hu, C.Martin, A.Maignan, J. C.Cezar, A.Tanaka, N. B.Brookes, D. I.Khomskii, and L. H.Tjeng, Phys. Rev. Lett. 102, 026404 (2009). 10.1103/PhysRevLett.102.026404 Google Scholar
- 7) T.Ozaki, H.Kino, J.Yu, M. J.Han, M.Ohfuti, F.Ishii, K.Sawada, Y.Kubata, T.Ohwaki, H.Weng, M.Toyoda, H.Kawai, Y.Okuno, R.Perez, P. P.Bell, T. V. T.Duy, Y.Xiao, A. M.Ito, and K.Terakura, operable from [http://www.openmx-square.org/].Google Scholar
- 8) J. P.Perdew, K.Burke, and M.Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865 Google Scholar
- 9) N.Troullier and J. L.Martins, Phys. Rev. B 43, 1993 (1991). 10.1103/PhysRevB.43.1993 Google Scholar
- 10) T.Ozaki, Phys. Rev. B 67, 155108 (2003). 10.1103/PhysRevB.67.155108 Google Scholar
- 11) T.Ozaki and H.Kino, Phys. Rev. B 69, 195113 (2004). 10.1103/PhysRevB.69.195113 Google Scholar
- 12) S. G.Louie, S.Froyen, and M. L.Cohen, Phys. Rev. B 26, 1738 (1982). 10.1103/PhysRevB.26.1738 Google Scholar
- 13) A. I.Liechtenstein, M. I.Katsnelson, V. P.Antropov, and V. A.Gubanov, J. Magn. Magn. Mater. 67, 65 (1987). 10.1016/0304-8853(87)90721-9 Google Scholar
- 14) M. J.Han, T.Ozaki, and J.Yu, Phys. Rev. B 70, 184421 (2004). 10.1103/PhysRevB.70.184421 Google Scholar
- 15) V. G.Zubkov, G. V.Bazuev, A. P.Tyutyunnik, and I. F.Berger, J. Solid State Chem. 160, 293 (2001). 10.1006/jssc.2001.9198 Google Scholar
- 16) H.Gould and J.Tobochnik, An Introduction to COMPUTER SIMULATION METHODS (Addison-Wesley, 1996).Google Scholar
- 17) A. I.Lichtenstein, M. I.Katsnelson, and G.Kotliar, Phys. Rev. Lett. 87, 067205 (2001). 10.1103/PhysRevLett.87.067205 Google Scholar