JPS Conf. Proc. 3, 014040 (2014) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013)
First-Principles Study of Exchange Interaction in Ising-Type Multiferroic Ca3CoMnO6
1Division of Mathematical and Physical Science, Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
2Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
1Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
2Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
Received September 30, 2013

We perform first-principles calculations of multiferroic Ca3CoMnO6 and evaluate the exchange coupling constants using the Green’s function method. We clarify the effect of intra-chain and inter-chain exchange interactions on magnetic stability. We find that inter-chain exchange coupling constants are antiferromagnetic and that there are geometrical frustrations in the triangular lattices of magnetic chains in Ca3CoMnO6. The magnetic transition temperature is evaluated using effective Hamiltonian with calculated exchange coupling constants. We obtain the transition temperature 5.80 K. The value has the same order as that of experimentally observed.

©2014 The Physical Society of Japan

References

  • 1) T.Kimura, T.Goto, H.Shintani, K.Ishizaka, T.Arima, and Y.Tokura, Nature 426, 55 (2003). 10.1038/nature02018 Google Scholar
  • 2) K.Taniguchi, N.Abe, T.Takenobu, Y.Iwasa, and T.Arima, Phys. Rev. Lett. 97, 097203 (2006). 10.1103/PhysRevLett.97.097203 Google Scholar
  • 3) G.Lawes, A. B.Harris, T.Kimura, N.Rogado, R. J.Cava, A.Aharony, O.Entin-Wohlman, T.Yildirim, M.Kenzelmann, C.Broholm, and A. P.Ramirez, Phys. Rev. Lett. 95, 087205 (2005). 10.1103/PhysRevLett.95.087205 Google Scholar
  • 4) S.Park, Y.Choi, C. L.Zhang, and S.-W.Cheong, Phys. Rev. Lett. 98, 057601 (2007). 10.1103/PhysRevLett.98.057601 Google Scholar
  • 5) Y. J.Choi, H. T.Yi, S.Lee, Q.Huang, V.Kiryukhin, and S.-W.Cheong, Phys. Rev. Lett. 100, 047601 (2008). 10.1103/PhysRevLett.100.047601 Google Scholar
  • 6) H.Wu, T.Burnus, Z.Hu, C.Martin, A.Maignan, J. C.Cezar, A.Tanaka, N. B.Brookes, D. I.Khomskii, and L. H.Tjeng, Phys. Rev. Lett. 102, 026404 (2009). 10.1103/PhysRevLett.102.026404 Google Scholar
  • 7) T.Ozaki, H.Kino, J.Yu, M. J.Han, M.Ohfuti, F.Ishii, K.Sawada, Y.Kubata, T.Ohwaki, H.Weng, M.Toyoda, H.Kawai, Y.Okuno, R.Perez, P. P.Bell, T. V. T.Duy, Y.Xiao, A. M.Ito, and K.Terakura, operable from [http://www.openmx-square.org/].Google Scholar
  • 8) J. P.Perdew, K.Burke, and M.Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865 Google Scholar
  • 9) N.Troullier and J. L.Martins, Phys. Rev. B 43, 1993 (1991). 10.1103/PhysRevB.43.1993 Google Scholar
  • 10) T.Ozaki, Phys. Rev. B 67, 155108 (2003). 10.1103/PhysRevB.67.155108 Google Scholar
  • 11) T.Ozaki and H.Kino, Phys. Rev. B 69, 195113 (2004). 10.1103/PhysRevB.69.195113 Google Scholar
  • 12) S. G.Louie, S.Froyen, and M. L.Cohen, Phys. Rev. B 26, 1738 (1982). 10.1103/PhysRevB.26.1738 Google Scholar
  • 13) A. I.Liechtenstein, M. I.Katsnelson, V. P.Antropov, and V. A.Gubanov, J. Magn. Magn. Mater. 67, 65 (1987). 10.1016/0304-8853(87)90721-9 Google Scholar
  • 14) M. J.Han, T.Ozaki, and J.Yu, Phys. Rev. B 70, 184421 (2004). 10.1103/PhysRevB.70.184421 Google Scholar
  • 15) V. G.Zubkov, G. V.Bazuev, A. P.Tyutyunnik, and I. F.Berger, J. Solid State Chem. 160, 293 (2001). 10.1006/jssc.2001.9198 Google Scholar
  • 16) H.Gould and J.Tobochnik, An Introduction to COMPUTER SIMULATION METHODS (Addison-Wesley, 1996).Google Scholar
  • 17) A. I.Lichtenstein, M. I.Katsnelson, and G.Kotliar, Phys. Rev. Lett. 87, 067205 (2001). 10.1103/PhysRevLett.87.067205 Google Scholar