JPS Conf. Proc. 3, 016019 (2014) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013)
Spin–Orbit Interaction Effects in the Electronic Structure of B20-Type CoSi: First-Principles Density Functional Study
1Faculty of Mathematics and Physics, Kanazawa University, Kanazawa 920-1192, Japan
2Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
Received October 20, 2013

We have performed fully relativistic first-principles density functional calculations for non-magnetic B20-type CoSi. The spin–orbit interaction has crucial effects on the electronic structures of a chiral crystal. The calculated band structure around the Fermi energy shows Bloch vector k-linear dispersion expressed by a realspin Weyl Hamiltonian, i.e., a mass-less Dirac Hamiltonian. We found the hedgehog-like spin textures in Bloch k-vector space (momentum space) on the isoenergy surface around the Γ point. The Fermi velocity for k-linear dispersion is about 0.2\(v_{\text{F}}^{g}\), where \(v_{\text{F}}^{g}\) is the Fermi velocity of graphene.

©2014 The Physical Society of Japan

References

  • 1) L.Degiorgi, Rev. Mod. Phys. 71, 687 (1999). 10.1103/RevModPhys.71.687 Google Scholar
  • 2) G.Shirane, R.Cowley, C.Majkrzak, J.Sokoloff, B.Pagonis, C.Perry, and Y.Ishikawa, Phys. Rev. B 28, 6251 (1983). 10.1103/PhysRevB.28.6251 Google Scholar
  • 3) K.Ishimoto, Y.Yamaguchi, S.Mitsuda, M.Ishida, and Y.Endoh, J. Magn. Magn. Mater. 54–57, 1003 (1986). 10.1016/0304-8853(86)90354-9 Google Scholar
  • 4) I.Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958). 10.1016/0022-3697(58)90076-3 Google Scholar
  • 5) T.Moriya, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91 Google Scholar
  • 6) S.Mühlbauer, B.Binz, F.Jonietz, C.Pfleiderer, A.Rosch, A.Neubauer, R.Georgii, and P.Böni, Science 323, 915 (2009). 10.1126/science.1166767 Google Scholar
  • 7) X. Z.Yu, Y.Onose, N.Kanazawa, J.-H.Park, J. H.Han, Y.Matsui, N.Nagaosa, and Y.Tokura, Nature 465, 901 (2010). 10.1038/nature09124 Google Scholar
  • 8) F.Jonietz, S.Mühlbauer, C.Pfleiderer, A.Neubauer, W.Münzer, A.Bauer, T.Adams, R.Georgii, P.Böni, R. A.Duine, K.Everschor, M.Garst, and A.Rosch, Science 330, 1648 (2010). 10.1126/science.1195709 Google Scholar
  • 9) E. I.Rashba, Sov. Phys. Solid State 2, 1109 (1960).Google Scholar
  • 10) G.Dresselhaus, Phys. Rev. 100, 580 (1955). 10.1103/PhysRev.100.580 Google Scholar
  • 11) P. A.Frigeri, Doctoral and Habilitation Theses, ETH Zürich (2005).Google Scholar
  • 12) P. A.Frigeri, D. F. D.Agterberg, A. A.Koga, and M. M.Sigrist, Phys. Rev. Lett. 92, 097001 (2004). 10.1103/PhysRevLett.92.097001 Google Scholar
  • 13) P. A.Frigeri, D. F.Agterberg, A.Koga, and M.Sigrist, Phys. Rev. Lett. 93, 099903 (2004). 10.1103/PhysRevLett.93.099903 Google Scholar
  • 14) T.Oguchi and T.Shishidou, J. Phys.: Condens. Matter 21, 092001 (2009). 10.1088/0953-8984/21/9/092001 Google Scholar
  • 15) S.Vajna, E.Simon, A.Szilva, K.Palotas, B.Ujfalussy, and L.Szunyogh, Phys. Rev. B 85, 075404 (2012). 10.1103/PhysRevB.85.075404 Google Scholar
  • 16) I. M.Miron, G.Gaudin, S.Auffret, B.Rodmacq, A.Schuhl, S.Pizzini, J.Vogel, and P.Gambardella, Nat. Mater. 9, 230 (2010). 10.1038/nmat2613 Google Scholar
  • 17) Y.Imai, M.Mukaida, K.Kobayashi, and T.Tsunoda, Intermetallics 9, 261 (2001). 10.1016/S0966-9795(01)00002-4 Google Scholar
  • 18) A.Sakai, F.Ishii, Y.Onose, Y.Tomioka, S.Yotsuhashi, H.Adachi, N.Nagaosa, and Y.Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007). 10.1143/JPSJ.76.093601[Abstract] Google Scholar
  • 19) Y. V.Kudryavtsev, V. A.Oksenenko, Y. P.Lee, J. Y.Rhee, and Y. D.Kim, J. Appl. Phys. 102, 103503 (2007). 10.1063/1.2812552 Google Scholar
  • 20) T.Ozaki, H.Kino, J.Yu, M. J.Han, M.Ohfuti, F.Ishii, K.Sawada, Y.Kubota, T.Ohwaki, H.Weng, M.Toyoda, H.Kawai, Y.Okuno, R.Perez, P. P.Bell, T.Duy, Y.Xiao, A. M.Ito, and K.Terakura, Available from, [http://www.openmx-square.org/].Google Scholar
  • 21) J. L.Mañes, Phys. Rev. B 85, 155118 (2012). 10.1103/PhysRevB.85.155118 Google Scholar
  • 22) J. P.Perdew, K.Burke, and M.Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865 Google Scholar
  • 23) N.Troullier and J. L.Martins, Phys. Rev. B 43, 1993 (1991). 10.1103/PhysRevB.43.1993 Google Scholar
  • 24) T.Ozaki, Phys. Rev. B 67, 155108 (2003). 10.1103/PhysRevB.67.155108 Google Scholar
  • 25) T.Ozaki and H.Kino, Phys. Rev. B 69, 195113 (2004). 10.1103/PhysRevB.69.195113 Google Scholar
  • 26) H.Kotaka, F.Ishii, and M.Saito, Jpn. J. Appl. Phys. 52, 035204 (2013). 10.7567/JJAP.52.035204 Google Scholar
  • 27) J.Teyssier, R.Viennois, J.Salamin, E.Giannini, and D.Van Der Marel, J. Alloys Compd. 465, 462 (2008). 10.1016/j.jallcom.2007.10.139 Google Scholar
  • 28) L. F.Mattheiss and D. R.Hamann, Phys. Rev. B 47, 78100 (1993).Google Scholar
  • 29) O.Nakanishi, A.Yanase, and A.Hasegawa, J. Magn. Magn. Mater. 15–18, 879 (1980). 10.1016/0304-8853(80)90805-7 Google Scholar
  • 30) T.Jeong and W. E.Pickett, Phys. Rev. B 70, 075114 (2004). 10.1103/PhysRevB.70.075114 Google Scholar
  • 31) N.Kanazawa, Y.Onose, Y.Shiomi, S.Ishiwata, and Y.Tokura, Appl. Phys. Lett. 100, 093902 (2012). 10.1063/1.3691260 Google Scholar
  • 32) C. J.Bradley and A. P.Cracknell, The mathematical theory of symmetry in solids (Clarendon Press, Oxford, U.K., 2007).Google Scholar
  • 33) K. V.Samokhin, Ann. Phys. 324, 2385 (2009). 10.1016/j.aop.2009.08.008 Google Scholar
  • 34) H.Ohta, T.Arioka, E.Kulatov, S.Mitsudo, and M.Motokawa, J. Magn. Magn. Mater. 177–181, 1371 (1998). 10.1016/S0304-8853(97)00409-5 Google Scholar
  • 35) Y.Onose, N.Takeshita, C.Terakura, H.Takagi, and Y.Tokura, Phys. Rev. B 72, 224431 (2005). 10.1103/PhysRevB.72.224431 Google Scholar