Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 30, 011002 (2020) [8 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019)
Second Order Perturbation Theory for a Superconducting Double Quantum Dot
1Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Praha 8 CZ-182 21, Czech Republic
2Institute of Physics, Albert Ludwig University of Freiburg, Hermann-Herder-Strasse 3, Freiburg DE-791 04, Germany
3Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Praha 2 CZ-121 16, Czech Republic
Received September 2, 2019

We extend our approach based on the second order perturbation theory in the Coulomb interaction recently developed for quantum dots coupled to superconducting leads to the superconducting double quantum dot setups. Using our perturbative method we evaluate several single-particle quantities such as on-dot induced gap and generalized occupations together with the Andreev in-gap spectra and compare them with numerically exact results from the Numerical Renormalization Group and Quantum Monte Carlo finding a very good correspondence for not too strongly correlated regimes. Thus we can offer in a wide parameter range this method as an efficient and reliable alternative to the heavy numerical tools exclusively used so far for the description of such experimentally relevant systems.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) S.De Franceschi, L.Kouwenhoven, C.Schönenberger, and W.Wernsdorfer, Nat. Nanotechnol. 5, 703 (2010). 10.1038/nnano.2010.173 Google Scholar
  • 2) J. P.Cleuziou, W.Wernsdorfer, V.Bouchiat, T.Ondarcuhu, and M.Monthioux, Nat. Nanotechnol. 1, 53 (2006). 10.1038/nnano.2006.54 Google Scholar
  • 3) V.Bouchiat, Supercond. Sci. Technol. 22, 064002 (2009). 10.1088/0953-2048/22/6/064002 Google Scholar
  • 4) J. D.Pillet, P.Joyez, R.Žitko, and M. F.Goffman, Phys. Rev. B 88, 045101 (2013). 10.1103/PhysRevB.88.045101 Google Scholar
  • 5) D.Sherman, J. S.Yodh, S. M.Albrecht, J.Nygård, P.Krogstrup, and C. M.Marcus, Nat. Nanotechnol. 12, 212 (2017). 10.1038/nnano.2016.227 Google Scholar
  • 6) J. C.Estrada Saldaña, A.Vekris, G.Steffensen, R.Žitko, P.Krogstrup, J.Paaske, K.Grove-Rasmussen, and J.Nygård, Phys. Rev. Lett. 121, 257701 (2018). 10.1103/PhysRevLett.121.257701 Google Scholar
  • 7) K.Grove-Rasmussen, G.Steffensen, A.Jellinggaard, M. H.Madsen, R.Žitko, J.Paaske, and J.Nygård, Nat. Commun. 9, 2376 (2018). 10.1038/s41467-018-04683-x Google Scholar
  • 8) J. C.Estrada Saldaña, A.Vekris, R.Žitko, G.Steffensen, P.Krogstrup, J.Paaske, K.Grove-Rasmussen, and J.Nygård, arXiv:1812.09303.Google Scholar
  • 9) Z.Su, A. B.Tacla, M.Hocevar, D.Car, S. R.Plissard, E. P. A. M.Bakkers, A. J.Daley, D.Pekker, and S. M.Frolov, Nat. Commun. 8, 585 (2017). 10.1038/s41467-017-00665-7 Google Scholar
  • 10) M.Ruby, B. W.Heinrich, Y.Peng, F.von Oppen, and K. J.Franke, Phys. Rev. Lett. 120, 156803 (2018). 10.1103/PhysRevLett.120.156803 Google Scholar
  • 11) D.-J.Choi, C. G.Fernández, E.Herrera, C.Rubio-Verdú, M. M.Ugeda, I.Guillamón, H.Suderow, J. I.Pascual, and N.Lorente, Phys. Rev. Lett. 120, 167001 (2018). 10.1103/PhysRevLett.120.167001 Google Scholar
  • 12) S.Kezilebieke, R.Žitko, M.Dvorak, T.Ojanen, and P.Liljeroth, Nano Lett. 19, 4614 (2019). 10.1021/acs.nanolett.9b01583 Google Scholar
  • 13) S.Droste, S.Andergassen, and J.Splettstoesser, J. Phys.: Condens. Matter 24, 415301 (2012). 10.1088/0953-8984/24/41/415301 Google Scholar
  • 14) S.Pfaller, A.Donarini, and M.Grifoni, Phys. Rev. B 87, 155439 (2013). 10.1103/PhysRevB.87.155439 Google Scholar
  • 15) R.Žitko, Phys. Rev. B 91, 165116 (2015). 10.1103/PhysRevB.91.165116 Google Scholar
  • 16) M.Žonda, V.Pokorný, V.Janiš, and T.Novotný, Sci. Rep. 5, 8821 (2015). 10.1038/srep08821 Google Scholar
  • 17) M.Žonda, V.Pokorný, V.Janiš, and T.Novotný, Phys. Rev. B 93, 024523 (2016). 10.1103/PhysRevB.93.024523 Google Scholar
  • 18) A.Kadlecová, M.Žonda, and T.Novotný, Phys. Rev. B 95, 195114 (2017). 10.1103/PhysRevB.95.195114 Google Scholar
  • 19) J.Bauer, A.Oguri, and A. C.Hewson, J. Phys.: Condens. Matter 19, 486211 (2007). 10.1088/0953-8984/19/48/486211 Google Scholar
  • 20) O.Parcollet, M.Ferrero, T.Ayral, H.Hafermann, I.Krivenko, L.Messio, and P.Seth, Comput. Phys. Commun. 196, 398 (2015). 10.1016/j.cpc.2015.04.023 Google Scholar
  • 21) H. J.Vidberg and J. W.Serene, J. Low Temp. Phys. 29, 179 (1977). 10.1007/BF00655090 Google Scholar
  • 22) R.Bulla, T. A.Costi, and T.Pruschke, Rev. Mod. Phys. 80, 395 (2008). 10.1103/RevModPhys.80.395 Google Scholar
  • 23) T.Hecht, A.Weichselbaum, J.von Delft, and R.Bulla, J. Phys.: Condens. Matter 20, 275213 (2008). 10.1088/0953-8984/20/27/275213 Google Scholar
  • 24) R.Žitko and T.Pruschke, Phys. Rev. B 79, 085106 (2009). 10.1103/PhysRevB.79.085106 Google Scholar
  • 25) R. Žitko, NRG Ljubljana - Open Source Numerical Renormalization Group Code, nrgljubljana.ijs.si.Google Scholar
  • 26) P.Seth, I.Krivenko, M.Ferrero, and O.Parcollet, Comput. Phys. Commun. 200, 274 (2016). 10.1016/j.cpc.2015.10.023 Google Scholar
  • 27) V.Pokorný and M.Žonda, Physica B 536, 488 (2018). 10.1016/j.physb.2017.08.059 Google Scholar
  • 28) A.Kadlecová, M.Žonda, V.Pokorný, and T.Novotný, Phys. Rev. Appl. 11, 044094 (2019). 10.1103/PhysRevApplied.11.044094 Google Scholar