Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 30, 011017 (2020) [5 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019)
Magneto-Optics of the Weyl Semimetal TaAs in the THz and IR Regions
1Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
2Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
3Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
Received August 23, 2019

The magnetic-field dependence of optical reflectivity [\(R(\omega )\)] and optical conductivity [\(\sigma (\omega )\)] spectra of the ideal type-I Weyl semimetal TaAs has been investigated at the temperature of 10 K in the terahertz (THz) and infrared (IR) regions. The obtained \(\sigma (\omega )\) spectrum in the THz region of \(\hbar \omega \leq 15\) meV is strongly affected by the applied magnetic field (B): The Drude spectral weight is rapidly suppressed and an energy gap originating from the optical transition in the lowest Landau levels appears with a gap size that increases in proportion to \(\sqrt{B} \), which suggests linear band dispersions. The obtained THz \(\sigma (\omega )\) spectra could be scaled not only in the energy scale by \(\sqrt{B} \) but also in the intensity by \(1/\sqrt{B} \) as predicted theoretically. In the IR region for \(\hbar \omega \geq 17\) meV, on the other hand, the observed \(R(\omega )\) peaks originating from the optical transitions in higher Landau levels are proportional to linear-B suggesting parabolic bands. The different band dispersions originate from the crossover from the Dirac to the free-electron bands.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) B. A.Bernevig, Nat. Phys. 11, 698 (2015). 10.1038/nphys3454 Google Scholar
  • 2) S.Jia, S.-Y.Xu, and M. Z.Hasan, Nat. Mater. 15, 1140 (2016). 10.1038/nmat4787 Google Scholar
  • 3) B. Q.Lv, N.Xu, H. M.Weng, J. Z.Ma, P.Richard, X. C.Huang, L. X.Zhao, G. F.Chen, C. E.Matt, F.Bisti, V. N.Strocov, J.Mesot, Z.Fang, X.Dai, T.Qian, M.Shi, and H.Ding, Nat. Phys. 11, 724 (2015). 10.1038/nphys3426 Google Scholar
  • 4) N.Xu, H. M.Weng, B. Q.Lv, C. E.Matt, J.Park, F.Bisti, V. N.Strocov, D.Gawryluk, E.Pomjakushina, K.Conder, N. C.Plumb, M.Radovic, G.Autès, O. V.Yazyev, Z.Fang, X.Dai, T.Qian, J.Mesot, H.Ding, and M.Shi, Nat. Commun. 7, 11006 (2016). 10.1038/ncomms11006 Google Scholar
  • 5) B.Xu, Y. M.Dai, L. X.Zhao, K.Wang, R.Yang, W.Zhang, J. Y.Liu, H.Xiao, G. F.Chen, A. J.Taylor, D. A.Yarotski, R. P.Prasankumar, and X. G.Qiu, Phys. Rev. B 93, 121110(R) (2016). 10.1103/PhysRevB.93.121110 Google Scholar
  • 6) D.Neubauer, A.Yaresko, W.Li, A.Löhle, R.Hübner, M. B.Schilling, C.Shekhar, C.Felser, M.Dressel, and A. V.Pronin, Phys. Rev. B 98, 195203 (2018). 10.1103/PhysRevB.98.195203 Google Scholar
  • 7) H.Yasuoka, T.Kubo, Y.Kishimoto, D.Kasinathan, M.Schmidt, B.Yan, Y.Zhang, H.Tou, C.Felser, A. P.Mackenzie, and M.Baenitz, Phys. Rev. Lett. 118, 236403 (2017). 10.1103/PhysRevLett.118.236403 Google Scholar
  • 8) S.Kimura, H.Yokoyama, H.Watanabe, J.Sichelschmidt, V.Süß, M.Schmidt, and C.Felser, Phys. Rev. B 96, 075119 (2017). 10.1103/PhysRevB.96.075119 Google Scholar
  • 9) S.Kimura, Y.Nakajima, Z.Mita, R.Jha, R.Higashinaka, T. D.Matsuda, and Y.Aoki, Phys. Rev. B 99, 195203 (2019). 10.1103/PhysRevB.99.195203 Google Scholar
  • 10) J. H.Du, H. D.Wang, Q.Chen, Q. H.Mao, R.Khan, B. J.Xu, Y. X.Zhou, Y. N.Zhang, J. H.Yang, B.Chen, C. M.Feng, and M. H.Fang, Sci. China Phys. Mech. Astron. 59, 657406 (2016). 10.1007/s11433-016-5798-4 Google Scholar
  • 11) P. E. C.Ashby and J. P.Carbotte, Phys. Rev. B 87, 245131 (2013). 10.1103/PhysRevB.87.245131 Google Scholar
  • 12) S.Kimura and H.Okamura, J. Phys. Soc. Jpn. 82, 021004 (2013). 10.7566/JPSJ.82.021004[Abstract] Google Scholar
  • 13) S.Kimura, M.Okuno, H.Iwata, H.Kitazawa, G.Kido, F.Ishiyama, and O.Sakai, J. Phys. Soc. Jpn. 71, 2200 (2002). 10.1143/JPSJ.71.2200[Abstract] Google Scholar
  • 14) C.Zhang, S.-Y.Xu, I.Belopolski, Z.Yuan, Z.Lin, B.Tong, N.Alidoust, C.-C.Lee, S.-M.Huang, H.Lin, M.Neupane, D. S.Sanchez, H.Zheng, G.Bian, J.Wang, C.Zhang, T.Neupert, M. Z.Hasan, and S.Jia, arXiv:1503.02630.Google Scholar
  • 15) P.Hosur, S. A.Parameswaran, and A.Vishwanath, Phys. Rev. Lett. 108, 046602 (2012). 10.1103/PhysRevLett.108.046602 Google Scholar
  • 16) X.Huang, L.Zhao, Y.Long, P.Wang, D.Chen, Z.Yang, H.Liang, M.Xue, H.Weng, Z.Fang, X.Dai, and G.Chen, Phys. Rev. X 5, 031023 (2015). 10.1103/PhysRevX.5.031023 Google Scholar
  • 17) R. Y.Chen, Z. G.Chen, X.-Y.Song, J. A.Schneeloch, G. D.Gu, F.Wang, and N. L.Wang, Phys. Rev. Lett. 115, 176404 (2015). 10.1103/PhysRevLett.115.176404 Google Scholar
  • 18) M.Hakl, S.Tchoumakov, I.Crassee, A.Akrap, B. A.Piot, C.Faugeras, G.Martinez, A.Nateprov, E.Arushanov, F.Teppe, R.Sankar, W.-L.Lee, J.Debray, O.Caha, J.Novák, M. O.Goerbig, M.Potemski, and M.Orlita, Phys. Rev. B 97, 115206 (2018). 10.1103/PhysRevB.97.115206 Google Scholar
  • 19) X.Yuan, Z.Yan, C.Song, M.Zhang, Z.Li, C.Zhang, Y.Liu, W.Wang, M.Zhao, Z.Lin, T.Xie, J.Ludwig, Y.Jiang, X.Zhang, C.Shang, Z.Ye, J.Wang, F.Chen, Z.Xia, D.Smirnov, X.Chen, Z.Wang, H.Yan, and F.Xiu, Nat. Commun. 9, 1854 (2018). 10.1038/s41467-018-04080-4 Google Scholar