Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 30, 011081 (2020) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019)
Resonant X-ray Diffraction Study of Antiferromagnetic Transition in GdNiC2
1Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan
2Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
3Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
4Department of Physics, Tohoku University, Sendai 980-8578, Japan
Received September 17, 2019

Resonant X-ray diffraction measurements on the antiferromagnet GdNiC2 were performed using synchrotron radiation. The polarization analysis revealed resonant X-ray diffraction peaks characterized by the wave vector \((1/2,1/2,0)\), whose intensity was enhanced near the L2 absorption edge of Gd. The intensity of the resonant diffraction peak decreased monotonically with increasing temperature toward an antiferromagnetic transition temperature. The antiferromagnetic order coexists with a charge density wave (CDW), and its magnetic wave vector is the same as the CDW wave vector. The 030 magnetic diffraction peak was also observed. These results suggest a noncollinear antiferromagnetic arrangement of Gd moments.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) G.Grüner, Density Waves in Solids (Addison-Wesley, Reading, MA, 1994).Google Scholar
  • 2) O. I.Bodak and E. P.Marussin, Dokl. Akad. Nauk Ukr. SSR, Ser. A 12, 1048 (1979).Google Scholar
  • 3) W.Jeitschko and M.Gerss, J. Less-Common Met. 116, 147 (1986). 10.1016/0022-5088(86)90225-0 Google Scholar
  • 4) M.Murase, A.Tobo, H.Onodera, Y.Hirano, T.Hosaka, S.Shimomura, and N.Wakabayashi, J. Phys. Soc. Jpn. 73, 2790 (2004). 10.1143/JPSJ.73.2790[Abstract] Google Scholar
  • 5) S.Shimomura, C.Hayashi, G.Asaka, N.Wakabayashi, M.Mizumaki, and H.Onodera, Phys. Rev. Lett. 102, 076404 (2009). 10.1103/PhysRevLett.102.076404 Google Scholar
  • 6) S.Shimomura, C.Hayashi, N.Hanasaki, K.Ohnuma, Y.Kobayashi, H.Nakao, M.Mizumaki, and H.Onodera, Phys. Rev. B 93, 165108 (2016). 10.1103/PhysRevB.93.165108 Google Scholar
  • 7) H.Onodera, Y.Koshikawa, M.Kosaka, M.Ohashi, H.Yamauchi, and Y.Yamaguchi, J. Magn. Magn. Mater. 182, 161 (1998). 10.1016/S0304-8853(97)01011-1 Google Scholar
  • 8) S.Matsuo, H.Onodera, M.Kosaka, H.Kobayashi, M.Ohashi, H.Yamauchi, and Y.Yamaguchi, J. Magn. Magn. Mater. 161, 255 (1996). 10.1016/S0304-8853(96)01282-6 Google Scholar
  • 9) N.Uchida, H.Onodera, M.Ohashi, Y.Yamaguchi, N.Sato, and S.Funahashi, J. Magn. Magn. Mater. 145, L16 (1995). 10.1016/0304-8853(94)01655-0 Google Scholar
  • 10) H.Onodera, N.Uchida, M.Ohashi, H.Yamauchi, Y.Yamaguchi, and N.Sato, J. Magn. Magn. Mater. 137, 35 (1994). 10.1016/0304-8853(94)90186-4 Google Scholar
  • 11) N.Hanasaki, S.Shimomura, K.Mikami, Y.Nogami, H.Nakao, and H.Onodera, Phys. Rev. B 95, 085103 (2017). 10.1103/PhysRevB.95.085103 Google Scholar
  • 12) K. K.Kolincio, K.Górnicka, M. J.Winiarski, J.Strychalska-Nowak, and T.Klimczuk, Phys. Rev. B 94, 195149 (2016). 10.1103/PhysRevB.94.195149 Google Scholar