Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 30, 011123 (2020) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019)
The f-electron State of the Heavy Fermion Superconductor NpPd5Al2 and the Isostructural Family
1Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2Graduate School of Science and Engineering, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
4IMR, Tohoku University, Oarai, Ibaraki 311-1313, Japan
5EC-JRC, Institute for Transuranium Elements, Karlsruhe 76125, Germany
6NSL-ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
7CROSS, Tokai, Ibaraki 319-1106, Japan
8J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
9National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
10Okayama University, Okayama 700-8530, Japan
1Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
3Materials & Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
4CROSS, Tokai, Ibaraki 319-1106, Japan
5Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
6Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6393, U.S.A.
Received September 6, 2019

The f-electron states of the heavy-fermion superconductor NpPd5Al2 were clarified from the systematic studies of the rare-earth and actinide based isostructural family. We found nearly trivalent Np3+ with 5f4 configuration at the boundary of the valence crossover, which may play an important role for the heavy-fermion superconductivity. We propose the pseudo-triplet ground state with \(\Gamma _{t1}\) singlet and \(\Gamma _{t5}\) doublet at \(\Delta E = 49\) K from the susceptibility and magnetization data. This is consistent with the common uniaxial point charge potential in the isostructural family. The specific heat is consistent with a Kondo model with the Kondo temperature \(T_{\text{K}}\) = 55 K, indicating the pseudo-triplet relevant to the Kondo effect. The previously reported unknown peak at \(\hbar \omega = 23.8\) meV in PrPd5Al2 was confirmed as the intrinsic signal using the chopper spectrometer “4SEASONS” at J-PARC/MLF.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) D.Aoki, Y.Haga, T. D.Matsuda, N.Tateiwa, S.Ikeda, Y.Homma, H.Sakai, Y.Shiokawa, E.Yamamoto, A.Nakamura, R.Settai, and Y.Ōnuki, J. Phys. Soc. Jpn. 76, 063701 (2007). 10.1143/JPSJ.76.063701[Abstract] Google Scholar
  • 2) J.-C.Griveau, K.Gofryk, and J.Rebizant, Phys. Rev. B 77, 212502 (2008). 10.1103/PhysRevB.77.212502 Google Scholar
  • 3) J. L.Sarrao, L. A.Morales, J. D.Thompson, B. L.Scott, G. R.Stewart, F.Wastin, J.Rebizant, P.Boulet, E.Colineau, and G. H.Lander, Nature 420, 297 (2002). 10.1038/nature01212 Google Scholar
  • 4) N.Metoki, H.Yamauchi, H. S.Suzuki, H.Kitazawa, M.Hagihara, T.Masuda, A. A.Aczel, S.Chi, T.Hong, M.Matsuda, D.Pajerowski, and J. A.Fernandez-Baca, J. Phys. Soc. Jpn. 87, 094704 (2018). 10.7566/JPSJ.87.094704[Abstract] Google Scholar
  • 5) N.Metoki, H.Yamauchi, H.Kitazawa, H. S.Suzuki, M.Hagihala, M. D.Frontzek, M.Matsuda, and J. A.Fernandez-Baca, J. Phys. Soc. Jpn. 86, 034710 (2017). 10.7566/JPSJ.86.034710[Abstract] Google Scholar
  • 6) N.Metoki, H.Yamauchi, H. S.Suzuki, H.Kitazawa, K.Kamazawa, K.Ikeuchi, R.Kajimoto, M.Nakamura, and Y.Inamura, J. Phys. Soc. Jpn. 87, 084708 (2018). 10.7566/JPSJ.87.084708[Abstract] Google Scholar
  • 7) J.Zubáč, P.Javorský, and B.Fak, J. Phys.: Condens. Matter 30, 255801 (2018). 10.1088/1361-648X/aac408 Google Scholar
  • 8) N.Metoki, Y.Haga, E.Yamamoto, and M.Matsuda, J. Phys. Soc. Jpn. 87, 114712 (2018). 10.7566/JPSJ.87.114712[Abstract] Google Scholar
  • 9) N.Metoki et al., submitted to J. Phys. Soc. Jpn.Google Scholar
  • 10) R.Kajimoto, M.Nakamura, Y.Inamura, F.Mizuno, K.Nakajima, S. O.Kawamura, T.Yokoo, T.Nakatani, R.Maruyama, K.Soyama, K.Shibata, K.Suzuya, S.Sato, K.Aizawa, M.Arai, S.Wakimoto, M.Ishikado, S.Shamoto, M.Fujita, H.Hiraka, K.Ohoyama, K.Yamada, and C. H.Lee, J. Phys. Soc. Jpn. 80, SB025 (2011). 10.1143/JPSJS.80SB.SB025[Abstract] Google Scholar
  • 11) M.Nakamura, R.Kajimoto, Y.Inamura, F.Mizuno, M.Fujita, T.Yokoo, and M.Arai, J. Phys. Soc. Jpn. 78, 093002 (2009). 10.1143/JPSJ.78.093002[Abstract] Google Scholar
  • 12) Y.Inamura, T.Nakatani, J.Suzuki, and T.Otomo, J. Phys. Soc. Jpn. 82, SA031 (2013). 10.7566/JPSJS.82SA.SA031[Abstract] Google Scholar
  • 13) R. A.Ribeiro, Y. F.Inoue, T.Onimaru, M. A.Avila, K.Shigetoh, and T.Takabatake, Physica B 404, 2946 (2009). 10.1016/j.physb.2009.07.038 Google Scholar
  • 14) Y. F.Inoue, T.Onimaru, A.Ishida, T.Takabatake, Y.Oohara, T. J.Sato, D. T.Adroja, A. D.Hillier, and E. A.Goremychkin, J. Phys.: Conf. Ser. 200, 032023 (2010). 10.1088/1742-6596/200/3/032023 Google Scholar
  • 15) F.Honda, M.-A.Measson, Y.Nakano, N.Yoshitani, E.Yamamoto, Y.Haga, T.Takeuchi, H.Yamagami, K.Shimizu, R.Settai, and Y.Ōnuki, J. Phys. Soc. Jpn. 77, 043701 (2008). 10.1143/JPSJ.77.043701[Abstract] Google Scholar
  • 16) Y.Nakano, F.Honda, T.Takeuchi, K.Sugiyama, M.Hagiwara, K.Kindo, E.Yamamoto, Y.Haga, R.Settai, H.Yamagami, and Y.Ōnuki, J. Phys. Soc. Jpn. 79, 024702 (2010). 10.1143/JPSJ.79.024702[Abstract] Google Scholar
  • 17) J.Zubáč, K.Vlášková, J.Prokleška, P.Proschek, and P.Javorský, J. Alloys Compd. 675, 94 (2016). 10.1016/j.jallcom.2016.02.256 Google Scholar
  • 18) K.Gofryk, J.-C.Griveau, E.Colineau, and J.Rebizant, Phys. Rev. B 77, 092405 (2008). 10.1103/PhysRevB.77.092405 Google Scholar
  • 19) J.-C.Griveau, K.Gofryk, D.Bouëxière, E.Colineau, and J.Rebizant, Phys. Rev. B 85, 085108 (2012). 10.1103/PhysRevB.85.085108 Google Scholar
  • 20) H.Yamagami, D.Aoki, Y.Haga, and Y.Ōnuki, J. Phys. Soc. Jpn. 76, 083708 (2007). 10.1143/JPSJ.76.083708[Abstract] Google Scholar
  • 21) K.Gofryk, J.-C.Griveau, E.Colineau, J. P.Sanchez, J.Rebizant, and R.Caciuffo, Phys. Rev. B 79, 134525 (2009). 10.1103/PhysRevB.79.134525 Google Scholar
  • 22) J.Jensen and A. R.Mackintosh, Rare Earth Magnetism (Clarendon Press, Oxford, U.K., 1991) p. 39. Google Scholar
  • 23) O.Elsenhans, A.Furrer, H. G.Purwins, and F.Hulliger, Z. Phys. B 80, 281 (1990) 10.1007/BF01357515. Google ScholarY.Inamura, T.Nakatani, J.Suzuki, and T.Otomo, J. Phys. Soc. Jpn. 82, SA031 (2013). 10.7566/JPSJS.82SA.SA031[Abstract] Google Scholar
  • 24) P.Čermák, A.Schneidewind, B.Liu, M. M.Koza, C.Franz, R.Schönmann, O.Sobolev, and C.Pfleiderer, Proc. Natl. Acad. Sci. U.S.A. 116, 6695 (2019). 10.1073/pnas.1819664116 Google Scholar