JPS Conf. Proc. 30, 011128 (2020) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019)
Successive Phase Transitions in R3Ir4Sn13 (R: La and Ce) Investigated Using Neutron and X-ray Diffraction
1Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
2Frontier Research Center for Applied Atomic Sciences, & Institute of Quantum Beam Science, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
3Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
4Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
5Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
1Frontier Research Center for Applied Atomic Sciences & Institute of Quantum Beam Science, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
2Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
3Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
4Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
5ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon, OX11 0QX, United Kingdom
6Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa
Received September 14, 2019

Successive phase transitions of R3Ir4Sn13 (R: La and Ce) were studied using neutron and x-ray diffraction techniques. A semimetal Ce3Ir4Sn13 undergoes three phase transitions: an antiferromagnetic ordering characterized by a propagation vector \(\boldsymbol{{q}}_{\textbf{M}} = (1/2,1/2,2/5)\) below 0.6 K, a structural transformation with \(\boldsymbol{{q}}_{\textbf{S2}} = (1/4,1/4,1/4)\) at 2.0 K, and another structural transformation with \(\boldsymbol{{q}}_{\textbf{S1}} = (1/2,1/2,0)\) above room temperature. La3Ir4Sn13 was confirmed to be a superconductor below 2.5 K under the \(\boldsymbol{{q}}_{\textbf{S1}} = (1/2,1/2,0)\) structure that also appears above room temperature.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) S. M.Young, S.Zaheer, J. C. Y.Teo, C. L.Kane, E. J.Mele, and A. M.Rappe, Phys. Rev. Lett. 108, 140405 (2012). 10.1103/PhysRevLett.108.140405 Google Scholar
  • 2) N. P.Armitage, E. J.Mele, and A.Vishwanath, Rev. Mod. Phys. 90, 015001 (2018). 10.1103/RevModPhys.90.015001 Google Scholar
  • 3) J. L.Mañes, Phys. Rev. B 85, 155118 (2012). 10.1103/PhysRevB.85.155118 Google Scholar
  • 4) E. L.Thomas, H.-O.Lee, A. N.Bankston, S.MaQuilon, P.Klavins, M.Moldovan, D. P.Young, Z.Fisk, and J. Y.Chan, J. Solid State Chem. 179, 1642 (2006). 10.1016/j.jssc.2006.02.024 Google Scholar
  • 5) A.Ślebarski, B. D.White, M.Fijałkowski, J.Goraus, J. J.Hamlin, and M. B.Maple, Phys. Rev. B 86, 205113 (2012). 10.1103/PhysRevB.86.205113 Google Scholar
  • 6) A.Ślebarski and J.Goraus, Phys. Rev. B 88, 155122 (2013). 10.1103/PhysRevB.88.155122 Google Scholar
  • 7) Y.Otomo, K.Iwasa, K.Suyama, K.Tomiyasu, H.Sagayama, R.Sagayama, H.Nakao, R.Kumai, and Y.Murakami, Phys. Rev. B 94, 075109 (2016). 10.1103/PhysRevB.94.075109 Google Scholar
  • 8) K.Suyama, K.Iwasa, Y.Otomo, K.Tomiyasu, H.Sagayama, R.Sagayama, H.Nakao, R.Kumai, Y.Kitajima, F.Damay, J.-M.Mignot, A.Yamada, T. D.Matsuda, and Y.Aoki, Phys. Rev. B 97, 235138 (2018). 10.1103/PhysRevB.97.235138 Google Scholar
  • 9) K.Iwasa, Y.Otomo, K.Suyama, K.Tomiyasu, S.Ohira-Kawamura, K.Nakajima, and J.-M.Mignot, Phys. Rev. B 95, 195156 (2017). 10.1103/PhysRevB.95.195156 Google Scholar
  • 10) D. T.Adroja, A. M.Strydom, A. P.Murani, W. A.Kockelmann, and A.Fraile, Physica B 403, 898 (2008). 10.1016/j.physb.2007.10.246 Google Scholar
  • 11) H.Sato, T.Fukuhara, S.Iwakawa, Y.Aoki, I.Sakamoto, S.Takayanagi, and N.Wada, Physica B 186–188, 630 (1993). 10.1016/0921-4526(93)90657-R Google Scholar
  • 12) J. R.Collave, H. A.Borges, S. M.Ramos, E. N.Hering, M. B.Fontes, E.Baggio-Saitovitch, A.Eichler, E. M.Bittar, and P. G.Pagliuso, Solid State Commun. 177, 132 (2014). 10.1016/j.ssc.2013.10.015 Google Scholar
  • 13) G. P.Espinosa, A. S.Cooper, and H.Barz, Mater. Res. Bull. 17, 963 (1982). 10.1016/0025-5408(82)90121-0 Google Scholar
  • 14) A. S.Cooper, Mater. Res. Bull. 15, 799 (1980). 10.1016/0025-5408(80)90014-8 Google Scholar
  • 15) C.Nagoshi, H.Sugawara, Y.Aoki, S.Sakai, M.Kohgi, H.Sato, T.Onimaru, and T.Sakakibara, Physica B 359–361, 248 (2005). 10.1016/j.physb.2005.01.052 Google Scholar
  • 16) S.Takayanagi, H.Sato, T.Fukuhara, and N.Wada, Physica B 199–200, 49 (1994). 10.1016/0921-4526(94)91734-5 Google Scholar
  • 17) G. P.Espinosa, Mater. Res. Bull. 15, 791 (1980). 10.1016/0025-5408(80)90013-6 Google Scholar
  • 18) J. P.Remeika, G. P.Espinosa, A. S.Cooper, H.Barz, J. M.Rowell, D. B.McWhan, J. M.Vandenberg, D. E.Moncton, Z.Fisk, L. D.Woolf, H. C.Hamaker, M. B.Maple, G.Shirane, and W.Thomlinson, Solid State Commun. 34, 923 (1980). 10.1016/0038-1098(80)91099-6 Google Scholar
  • 19) I.Tamura, K.Oikawa, T.Kawasaki, T.Ohhara, K.Kaneko, R.Kiyanagi, H.Kimura, M.Takahashi, M.Arai, Y.Noda, and K.Ohshima, J. Phys.: Conf. Ser. 340, 012040 (2012). 10.1088/1742-6596/340/1/012040 Google Scholar
  • 20) K.Oikawa, T.Kawasaki, T.Ohhara, R.Kiyanagi, K.Kaneko, I.Tamura, T.Nakamura, M.Harada, A.Nakao, T.Hanashima, K.Munakata, H.Kimura, Y.Noda, M.Takahashi, and T.Kiyotani, JPS Conf. Proc. 1, 014013 (2014). 10.7566/JPSCP.1.014013[Abstract] Google Scholar
  • 21) T.Ohhara, K.Kusaka, T.Hosoya, K.Kurihara, K.Tomoyori, N.Niimura, I.Tanaka, J.Suzuki, T.Nakatani, T.Otomo, S.Matsuoka, K.Tomita, Y.Nishimaki, T.Ajima, and S.Ryufuku, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 195 (2009). 10.1016/j.nima.2008.11.030 Google Scholar
  • 22) D. G.Mazzone, S.Gerber, J. L.Gavilano, R.Sibille, M.Medarde, B.Delley, M.Ramakrishnan, M.Neugebauer, L. P.Regnault, D.Chernyshov, A.Piovano, T. M.Fernández-Díaz, L.Keller, A.Cervellino, E.Pomjakushina, K.Conder, and M.Kenzelmann, Phys. Rev. B 92, 024101 (2015). 10.1103/PhysRevB.92.024101 Google Scholar
  • 23) I. W. H.Oswald, B. K.Rai, G. T.McCandless, E.Morosan, and J. Y.Chan, CrystEngComm 19, 3381 (2017). 10.1039/C7CE00419B Google Scholar
  • 24) A. M.Hallas, C. L.Huang, B. K.Rai, A.Weiland, G. T.McCandless, J. Y.Chan, J.Beare, G. M.Luke, and E.Morosan, arXiv:1910.10764v1.Google Scholar
  • 25) D.Niepmann, R.Pöttgen, K. M.Poduska, F. J.DiSalvo, H.Trill, and B. D.Mosel, Z. Naturforsch. B 56, 1 (2001). 10.1515/znb-2001-0102 Google Scholar
  • 26) V.Kozii and L.Fu, Phys. Rev. Lett. 115, 207002 (2015). 10.1103/PhysRevLett.115.207002 Google Scholar