JPS Conf. Proc. 30, 011184 (2020) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019)
Photoinduced η-pairing in One-dimensional Mott Insulators
- Full text:
- PDF (eReader) / PDF (Download) (1225 kB)
1Institut für Physik, Universität Greifswald, D-17489 Greifswald, Germany
2Computational Condensed Matter Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan
3Department of Physics, Columbia University, New York, NY 10027, U.S.A.
4Computational Quantum Matter Research Team, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
5Computational Materials Science Research Team, RIKEN Center for Computational Science (R-CCS), Kobe 650-0047, Japan
Received September 15, 2019
Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the η-pairing mechanism in the half-filled Hubbard chain. We estimate the characteristic pair correlation function and verify the accuracy of our numerical results by comparison with exact-diagonalization data for small systems. The optimal parameter set of the pump that most enhances the η-pair correlations, is calculated in the strong-coupling regime. For such a pump, we explore the possibility of quasi-long-range order.
©2020 The Author(s)

References
- 1) E.Dagotto, Rev. Mod. Phys. 66, 763 (1994). 10.1103/RevModPhys.66.763 Google Scholar
- 2) P. A.Lee, N.Nagaosa, and X.-G.Wen, Rev. Mod. Phys. 78, 17 (2006). 10.1103/RevModPhys.78.17 Google Scholar
- 3) D.Fausti, R. I.Tobey, N.Dean, S.Kaiser, A.Dienst, M. C.Hoffmann, S.Pyon, T.Takayama, H.Takagi, and A.Cavalleri, Science 331, 189 (2011). 10.1126/science.1197294 Google Scholar
- 4) W.Hu, S.Kaiser, D.Nicoletti, C. R.Hunt, I.Gierz, M. C.Hoffmann, M. L.Tacon, T.Loew, B.Keimer, and A.Cavalleri, Nat. Mater. 13, 705 (2014). 10.1038/nmat3963 Google Scholar
- 5) R.Mankowsky, A.Subedi, M.Först, S. O.Mariager, M.Chollet, H. T.Lemke, J. S.Robinson, J. M.Glownia, M. P.Minitti, A.Frano, M.Fechner, N. A.Spaldin, T.Loew, B.Keimer, A.Georges, and A.Cavalleri, Nature 516, 71 (2014). 10.1038/nature13875 Google Scholar
- 6) M.Mitrano, A.Cantaluppi, D.Nicoletti, S.Kaiser, A.Perucchi, S.Lupi, P.Di Pietro, D.Pontiroli, M.Riccò, S. R.Clark, D.Jaksch, and A.Cavalleri, Nature 530, 461 (2016). 10.1038/nature16522 Google Scholar
- 7) T.Kaneko, T.Shirakawa, S.Sorella, and S.Yunoki, Phys. Rev. Lett. 122, 077002 (2019). 10.1103/PhysRevLett.122.077002 Google Scholar
- 8) C. N.Yang, Phys. Rev. Lett. 63, 2144 (1989). 10.1103/PhysRevLett.63.2144 Google Scholar
- 9) F. H. L.Essler, V. E.Korepin, and K.Schoutens, Phys. Rev. Lett. 67, 3848 (1991). 10.1103/PhysRevLett.67.3848 Google Scholar
- 10) F. H. L.Eßler, V. E.Korepin, and K.Schoutens, Nucl. Phys. B 372, 559 (1992). 10.1016/0550-3213(92)90366-J Google Scholar
- 11) See also Ref. 12 for analogous electron–electron pair correlations of spinless fermions induced by the pulse irradiation in the excitonic insulator.Google Scholar
- 12) R.Fujiuchi, T.Kaneko, Y.Ohta, and S.Yunoki, Phys. Rev. B 100, 045121 (2019). 10.1103/PhysRevB.100.045121 Google Scholar
- 13) S. R.White, Phys. Rev. Lett. 69, 2863 (1992). 10.1103/PhysRevLett.69.2863 Google Scholar
- 14) R.Peierls, Z. Phys. 80, 763 (1933). 10.1007/BF01342591 Google Scholar
- 15) G.Vidal, Phys. Rev. Lett. 91, 147902 (2003). 10.1103/PhysRevLett.91.147902 Google Scholar
- 16) E.Jeckelmann, F.Gebhard, and F. H. L.Essler, Phys. Rev. Lett. 85, 3910 (2000). 10.1103/PhysRevLett.85.3910 Google Scholar
- 17) G.Vidal, Phys. Rev. Lett. 98, 070201 (2007). 10.1103/PhysRevLett.98.070201 Google Scholar
- 18) Web [http://itensor.org/].Google Scholar