- Full text:
- PDF (eReader) / PDF (Download) (478 kB)
The νp process appears in proton-rich, hot matter which is expanding in a neutrino wind and may be realised in explosive environments such as core-collapse supernovae or in outflows from accretion disks. The impact of uncertainties in nuclear reaction cross sections on the finally produced abundances has been studied by applying Monte Carlo variation of all astrophysical reaction rates in a large reaction network. As the detailed astrophysical conditions of the νp process still are unknown, a parameter study was performed, with 23 trajectories covering a large range of entropies and Ye. The resulting abundance uncertainties are given for each trajectory. The νp process has been speculated to contribute to the light p nuclides but it was not possible so far to reproduce the solar isotope ratios. It is found that it is possible to reproduce the solar 92Mo/94Mo abundance ratio within nuclear uncertainties, even within a single trajectory. The solar values of the abundances in the Kr-Sr region relative to the Mo region, however, cannot be achieved within a single trajectory. They may still be obtained from a weighted superposition of different trajectories, though, depending on the actual conditions in the production site. For a stronger constraint of the required conditions, it would be necessary to reduce the uncertainties in the 3α and 56Ni(n,p)56Co rates at temperatures T > 3 GK.

References
- 1) T.Rauscher, N.Nishimura, R.Hirschi, G.Cescutti, A. St. J.Murphy, and A.Heger, Mon. Not. R. Astron. Soc. 463, 4153 (2016). 10.1093/mnras/stw2266 Google Scholar
- 2) N.Nishimura et al., Mon. Not. R. Astron. Soc. 474, 3133 (2018). 10.1093/mnras/stx3033 Google Scholar
- 3) N.Nishimura, R.Hirschi, T.Rauscher, G.Cescutti, and A. St. J.Murphy, Mon. Not. R. Astron. Soc. 469, 1752 (2017). 10.1093/mnras/stx696 Google Scholar
- 4) G.Cescutti et al., Mon. Not. R. Astron. Soc. 478, 4101 (2018). 10.1093/mnras/sty1185 Google Scholar
- 5) N.Nishimura et al., Mon. Not. R. Astron. Soc. 489, 1379 (2019). 10.1093/mnras/stz2104 Google Scholar
- 6) H.Schatz et al., Phys. Rep. 294, 167 (1998). 10.1016/S0370-1573(97)00048-3 Google Scholar
- 7) C.Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006). 10.1103/PhysRevLett.96.142502 Google Scholar
- 8) C.Fröhlich et al., Astrophys. J. 637, 415 (2006). 10.1086/498224 Google Scholar
- 9) J.Pruet, R. D.Hoffman, S. E.Woosley, H.-T.Janka, and R.Buras, Astrophys. J. 644, 1028 (2006). 10.1086/503891 Google Scholar
- 10) H. O. U.Fynbo et al., Nature 433, 136 (2005). 10.1038/nature03219 Google Scholar
- 11) C.Angulo et al., Nucl. Phys. A 656, 3 (1999). 10.1016/S0375-9474(99)00030-5 Google Scholar
- 12) T.Rauscher, Astrophys. J. Lett. 755, L10 (2012). 10.1088/2041-8205/755/1/L10 Google Scholar
- 13) T.Rauscher, Astrophys. J. Suppl. 201, 26 (2012). 10.1088/0067-0049/201/2/26 Google Scholar
- 14) T.Rauscher, AIP Adv. 4, 041012 (2014). 10.1063/1.4868239 Google Scholar
- 15) E. T.Jaynes, in Papers on Probability, Statistics and Statistical Physics, ed. R. D.Rosenkrantz (D. Reidel Publishing, Dordrecht, 1982).Google Scholar
- 16) E.Limpert, W. A.Stahel, and M.Abbt, Bioscience 51, 341 (2001). 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 Google Scholar
- 17) M. G.Kendall, Rank Correlation Methods (Charles Griffin, London, 1955).Google Scholar
- 18) K.Pearson, Proc. R. Soc. London 58, 240 (1895). 10.1098/rspl.1895.0041 Google Scholar
- 19) T.Rauscher et al., Rep. Prog. Phys. 76, 066201 (2013). 10.1088/0034-4885/76/6/066201 Google Scholar
- 20) S.Wanajo, H.-T.Janka, and S.Kubono, Astrophys. J. 729, 46 (2011). 10.1088/0004-637X/729/1/46 Google Scholar
- 21) Y. M.Xing et al., Phys. Lett. B 781, 358 (2018). 10.1016/j.physletb.2018.04.009 Google Scholar
- 22) The full tables can be found at https://nucastro.org/tables.html.Google Scholar
- 23) J.Mayer et al., Phys. Rev. C 93, 045809 (2016). 10.1103/PhysRevC.93.045809 Google Scholar