JPS Conf. Proc. 31, 011026 (2020) [6 pages]
Proceedings of the 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15)
Impact of Uncertainties in Astrophysical Reaction Rates on Nucleosynthesis in the νp Process
1Department of Physics, University of Basel, 4056 Basel, Switzerland
2Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, U.K.
3UK Network for Bridging Disciplines of Galactic Chemical Evolution (BRIDGCE)
4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
5INAF, Osservatorio Astronomico di Trieste, I-34131 Trieste, Italy
6Astrophysics Group, Faculty of Natural Sciences, Keele University, Keele ST5 5BG, U.K.
7Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8583, Japan
8School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, U.K.
9Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, U.S.A.
Received September 6, 2019

The νp process appears in proton-rich, hot matter which is expanding in a neutrino wind and may be realised in explosive environments such as core-collapse supernovae or in outflows from accretion disks. The impact of uncertainties in nuclear reaction cross sections on the finally produced abundances has been studied by applying Monte Carlo variation of all astrophysical reaction rates in a large reaction network. As the detailed astrophysical conditions of the νp process still are unknown, a parameter study was performed, with 23 trajectories covering a large range of entropies and Ye. The resulting abundance uncertainties are given for each trajectory. The νp process has been speculated to contribute to the light p nuclides but it was not possible so far to reproduce the solar isotope ratios. It is found that it is possible to reproduce the solar 92Mo/94Mo abundance ratio within nuclear uncertainties, even within a single trajectory. The solar values of the abundances in the Kr-Sr region relative to the Mo region, however, cannot be achieved within a single trajectory. They may still be obtained from a weighted superposition of different trajectories, though, depending on the actual conditions in the production site. For a stronger constraint of the required conditions, it would be necessary to reduce the uncertainties in the 3α and 56Ni(n,p)56Co rates at temperatures T > 3 GK.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.


  • 1) T.Rauscher, N.Nishimura, R.Hirschi, G.Cescutti, A. St. J.Murphy, and A.Heger, Mon. Not. R. Astron. Soc. 463, 4153 (2016). 10.1093/mnras/stw2266 Google Scholar
  • 2) N.Nishimura et al., Mon. Not. R. Astron. Soc. 474, 3133 (2018). 10.1093/mnras/stx3033 Google Scholar
  • 3) N.Nishimura, R.Hirschi, T.Rauscher, G.Cescutti, and A. St. J.Murphy, Mon. Not. R. Astron. Soc. 469, 1752 (2017). 10.1093/mnras/stx696 Google Scholar
  • 4) G.Cescutti et al., Mon. Not. R. Astron. Soc. 478, 4101 (2018). 10.1093/mnras/sty1185 Google Scholar
  • 5) N.Nishimura et al., Mon. Not. R. Astron. Soc. 489, 1379 (2019). 10.1093/mnras/stz2104 Google Scholar
  • 6) H.Schatz et al., Phys. Rep. 294, 167 (1998). 10.1016/S0370-1573(97)00048-3 Google Scholar
  • 7) C.Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006). 10.1103/PhysRevLett.96.142502 Google Scholar
  • 8) C.Fröhlich et al., Astrophys. J. 637, 415 (2006). 10.1086/498224 Google Scholar
  • 9) J.Pruet, R. D.Hoffman, S. E.Woosley, H.-T.Janka, and R.Buras, Astrophys. J. 644, 1028 (2006). 10.1086/503891 Google Scholar
  • 10) H. O. U.Fynbo et al., Nature 433, 136 (2005). 10.1038/nature03219 Google Scholar
  • 11) C.Angulo et al., Nucl. Phys. A 656, 3 (1999). 10.1016/S0375-9474(99)00030-5 Google Scholar
  • 12) T.Rauscher, Astrophys. J. Lett. 755, L10 (2012). 10.1088/2041-8205/755/1/L10 Google Scholar
  • 13) T.Rauscher, Astrophys. J. Suppl. 201, 26 (2012). 10.1088/0067-0049/201/2/26 Google Scholar
  • 14) T.Rauscher, AIP Adv. 4, 041012 (2014). 10.1063/1.4868239 Google Scholar
  • 15) E. T.Jaynes, in Papers on Probability, Statistics and Statistical Physics, ed. R. D.Rosenkrantz (D. Reidel Publishing, Dordrecht, 1982).Google Scholar
  • 16) E.Limpert, W. A.Stahel, and M.Abbt, Bioscience 51, 341 (2001). 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 Google Scholar
  • 17) M. G.Kendall, Rank Correlation Methods (Charles Griffin, London, 1955).Google Scholar
  • 18) K.Pearson, Proc. R. Soc. London 58, 240 (1895). 10.1098/rspl.1895.0041 Google Scholar
  • 19) T.Rauscher et al., Rep. Prog. Phys. 76, 066201 (2013). 10.1088/0034-4885/76/6/066201 Google Scholar
  • 20) S.Wanajo, H.-T.Janka, and S.Kubono, Astrophys. J. 729, 46 (2011). 10.1088/0004-637X/729/1/46 Google Scholar
  • 21) Y. M.Xing et al., Phys. Lett. B 781, 358 (2018). 10.1016/j.physletb.2018.04.009 Google Scholar
  • 22) The full tables can be found at Scholar
  • 23) J.Mayer et al., Phys. Rev. C 93, 045809 (2016). 10.1103/PhysRevC.93.045809 Google Scholar