Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 32, 010061 (2020) [6 pages]
Proceedings of 13th International Conference on Nucleus-Nucleus Collisions
Impact of Uncertainties in Nuclear Reaction Cross Sections on p Nucleosynthesis in Thermonuclear Supernovae
1Department of Physics, University of Basel, 4056 Basel, Switzerland
2Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
3UK Network for Bridging Disciplines of Galactic Chemical Evolution (BRIDGCE), https://www.bridgce.ac.uk
4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
5INAF, Osservatorio Astronomico di Trieste, I-34131 Trieste, Italy
6Astrophysics Group, Faculty of Natural Sciences, Keele University, Keele ST5 5BG, U.K.
7Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8583, Japan
8School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, U.K.
9INFN, Sezione di Torino, I-10125 Torino, Italy
Received July 18, 2019

The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and α-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Galactic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. From detailed statistical analyses uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method so far was already applied to a number of nucleosynthesis processes. Here we focus on the production of p nuclei in white dwarfs exploding as thermonuclear (type Ia) supernovae. We find generally small uncertainties in the final abundances despite of the dominance of theoretical nuclear uncertainties. A separate analysis of low- and high-density regions indicates that the total uncertainties are dominated by the high-density regions.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) T.Rauscher, N.Nishimura, R.Hirschi, G.Cescutti, A. St. J.Murphy, and A.Heger, Mon. Not. R. Astron. Soc. 463, 4153 (2016). 10.1093/mnras/stw2266 Google Scholar
  • 2) N.Nishimura, T.Rauscher, R.Hirschi, G.Cescutti, A. St. J.Murphy, and C.Fröhlich, Mon. Not. R. Astron. Soc. (in press); arXiv:1907.13129.Google Scholar
  • 3) N.Nishimura, T.Rauscher, R.Hirschi, A. St. J.Murphy, G.Cescutti, and C.Travaglio, Mon. Not. R. Astron. Soc. 474, 3133 (2018). 10.1093/mnras/stx3033 Google Scholar
  • 4) N.Nishimura, R.Hirschi, T.Rauscher, A. St. J.Murphy, and G.Cescutti, Mon. Not. R. Astron. Soc. 469, 1752 (2017). 10.1093/mnras/stx696 Google Scholar
  • 5) G.Cescutti, R.Hirschi, N.Nishimura, J. W.den Hartogh, T.Rauscher, A. St. J.Murphy, and S.Cristallo, Mon. Not. R. Astron. Soc. 478, 4101 (2018). 10.1093/mnras/sty1185 Google Scholar
  • 6) C.Travaglio, F. K.Röpke, R.Gallino, and W.Hillebrandt, Astrophys. J. 739, 93 (2011). 10.1088/0004-637X/739/2/93 Google Scholar
  • 7) T.Rauscher, Astrophys. J. Lett. 755, L10 (2012). 10.1088/2041-8205/755/1/L10 Google Scholar
  • 8) T.Rauscher, AIP Adv. 4, 041012 (2014). 10.1063/1.4868239 Google Scholar
  • 9) M. G.Kendall, Rank Correlation Methods (Charles Griffin, London, 1955).Google Scholar
  • 10) W. A.Hemmerich, Korrelation, Korrelationskoeffizient (2017) [https://web.archive.org/web/20170624012731/http://matheguru.com/stochastik/korrelation.html].Google Scholar
  • 11) K.Pearson, Proc. R. Soc. London 58, 240 (1895). 10.1098/rspl.1895.0041 Google Scholar
  • 12) T.Rauscher, N.Dauphas, I.Dillmann, C.Fröhlich, Zs.Fülöp, and Gy.Gyürky, Rep. Prog. Phys. 76, 066201 (2013). 10.1088/0034-4885/76/6/066201 Google Scholar