- Full text:
- PDF (eReader) / PDF (Download) (1451 kB)
In situ neutron diffraction measurements during tensile testing at room temperature and low temperature of a duplex stainless steel consisting of BCC and FCC phases have been performed. The deformation behavior, phase stresses and contributions of the constituent phases to the strength were analyzed and discussed. The steel showed good balance of strength and ductility at 200 K, and the phase stresses of the constituent phases at 200 K are larger than those at room temperature. Although the contributed stress to the strength of BCC phase was higher than that of FCC phase, the contribution portion to the strength of each constituent phases remained nearly constant as the test temperature changed. The strengthening with decreasing test temperature occurred in both BCC and FCC phases enhancing the work-hardening rate of the steel at low temperature.
References
- 1) J.-O.Nilsson, Mater. Sci. Technol. 8, 685 (1992). 10.1179/mst.1992.8.8.685 Google Scholar
- 2) M.Knyazeva and M.Pohl, Metallogr. Microstruct. Anal. 2, 113 (2013). 10.1007/s13632-013-0066-8 Google Scholar
- 3) N.Tsuchida, T.Kawahata, E.Ishimaru, A.Takahashi, H.Suzuki, and T.Shobu, ISIJ Int. 53, 1260 (2013). 10.2355/isijinternational.53.1260 Google Scholar
- 4) S.-K.Kim, K.-Y.Kang, M.-S.Kim, and J.-M.Lee, Metals 5, 1732 (2015). 10.3390/met5031732 Google Scholar
- 5) N.Koga, O.Umezawa, and T.Nameki, CAMP-ISIJ 31, 835 (2018).Google Scholar
- 6) R. P.Reed and A. F.Clark, Materials at Low Temperature (American Society of Metals, Metals Park, OH, 1983) Chap. 11, p. 371.Google Scholar
- 7) M. L. G.Byrnes, M.Grujicic, and W. S.Owen, Acta Metall. 35, 1853 (1987). 10.1016/0001-6160(87)90131-3 Google Scholar
- 8) S.Morooka, N.Sato, M.Ojima, S.Harjo, Y.Adach, Y.Tomota, and O.Umezawa, Int. J. Automot. Eng. 2, 131 (2011). 10.20485/jsaeijae.2.4_131 Google Scholar
- 9) S.Harjo, N.Tsuchida, J.Abe, and W.Gong, Sci. Rep. 7, 15149 (2017). 10.1038/s41598-017-15252-5 Google Scholar
- 10) T.Yamashita, S.Morooka, S.Harjo, T.Kawasaki, N.Koga, and O.Umezawa, Scr. Mater. 177, 6 (2020). 10.1016/j.scriptamat.2019.10.002 Google Scholar
- 11) S.Harjo, T.Ito, K.Aizawa, H.Arima, J.Abe, A.Moriai, T.Iwahashi, and T.Kamiyama, Mater. Sci. Forum 681, 443 (2011). 10.4028/www.scientific.net/MSF.681.443 Google Scholar
- 12) S.Harjo, K.Aizawa, T.Kawasaki, T.Iwahashi, T.Nakamoto, and T.Henmi, Proc. 21st Meeting of the International Collaboration on Advanced Neutron Sources, 2016.Google Scholar
- 13) R.Oishi, M.Yonemura, Y.Nishimaki, S.Torii, A.Hoshikawa, T.Ishigaki, T.Morishima, K.Mori, and T.Kamiyama, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 94 (2009). 10.1016/j.nima.2008.11.056 Google Scholar
- 14) A. J.Allen, M.Bourke, W. I. F.David, S.Dawes, M. T.Hutching, A. D.Krawitz, and C. G.Windsor, Proc. ICRS2, London, 1989, p. 78.Google Scholar
- 15) S.Harjo, J.Abe, K.Aizawa, W.Gong, and T.Iwahashi, JPS Conf. Proc. 1, 014017 (2014). 10.7566/JPSCP.1.014017[Abstract] Google Scholar
- 16) M.Tendo, Y.Tadokoro, K.Suetsugu, and T.Nakazawa, ISIJ Int. 41, 262 (2001). 10.2355/isijinternational.41.262 Google Scholar
- 17) T.Mori, Y.Yanai, and Y.Fukui, J. Soc. Mater. Sci. Jpn. 40, 172 (1991). 10.2472/jsms.40.172 Google Scholar