- Full text:
- PDF (eReader) / PDF (Download) (1351 kB)
Neutron resonance absorption imaging was adapted to observe a Eu band adsorbed on a CMPO/SiO2–P column sample for minor actinide recovery by extraction chromatography. Several wet samples were prepared with either light water or heavy water and compared to the dry sample to determine neutron transmission. The neutron transmission spectra showed that 45% of neutrons were transmitted through the dry sample, while 20% and 42% of neutrons were transmitted through the wet samples of HNO3 and DNO3, respectively. In this study, it was confirmed that the resonance absorption imaging has great potential for the direct observation of the Eu band migration.

References
- 1) E. P.Horwitz, D. C.Kalina, H.Diamond, G. F.Vandergrift, and W. W.Schulz, Solvent Extr. Ion Exch. 3, 75 (1985). 10.1080/07366298508918504 Google Scholar
- 2) W. W.Schulz and E. P.Horwitz, Sep. Sci. Technol. 23, 1191 (1988). 10.1080/01496398808075625 Google Scholar
- 3) Y.Koma, M.Watanabe, S.Nemoto, and Y.Tanaka, J. Nucl. Sci. Technol. 35, 130 (1998). 10.1080/18811248.1998.9733833 Google Scholar
- 4) K. L.Nash, Solvent Extr. Ion Exch. 33, 1 (2015). 10.1080/07366299.2014.985912 Google Scholar
- 5) C.Marie, B.Hiscox, and K. L.Nash, Dalton Trans. 41, 1054 (2012). 10.1039/C1DT11534K Google Scholar
- 6) G. J.Lumetta, T. G.Levitskaia, A.Wilden, A. J.Casella, G. B.Hall, L.Lin, S. I.Sinkov, J. D.Law, and G.Modolo, Solvent Extr. Ion Exch. 35, 377 (2017). 10.1080/07366299.2017.1368901 Google Scholar
- 7) I.Svantesson, G.Persson, I.Hagström, and J. O.Liljenzin, J. Inorg. Nucl. Chem. 42, 1037 (1980). 10.1016/0022-1902(80)80397-6 Google Scholar
- 8) Y.Wei, A.Zhang, M.Kumagai, M.Watanabe, and N.Hayashi, J. Nucl. Sci. Technol. 41, 315 (2004). 10.1080/18811248.2004.9715490 Google Scholar
- 9) Y.Wei, M.Kumagai, and Y.Takashima, Nucl. Technol. 132, 413 (2000). 10.13182/NT00-A3154 Google Scholar
- 10) S.Watanabe, I.Goto, K.Nomura, Y.Sano, and Y.Koma, Energy Procedia 7, 449 (2011). 10.1016/j.egypro.2011.06.060 Google Scholar
- 11) S.Watanabe, K.Nomura, S.Kitawaki, A.Shibata, H.Kofuji, Y.Sano, and M.Takeuchi, Procedia Chem. 21, 101 (2016). 10.1016/j.proche.2016.10.015 Google Scholar
- 12) S.Watanabe, T.Senzaki, A.Shibata, K.Nomura, M.Takeuchi, K.Nakatani, H.Matsuura, Y.Horiuchi, and T.Arai, J. Radioanal. Nucl. Chem. 322, 1273 (2019). 10.1007/s10967-019-06808-y Google Scholar
- 13) S.Watanabe, Y.Sano, K.Nomura, Y.Koma, and Y.Okamoto, EPJ Nucl. Sci. Technol. 1, 9 (2015). 10.1051/epjn/e2015-50006-1 Google Scholar
- 14) T.Shinohara, T.Kai, K.Oikawa, T.Nakatani, M.Segawa, K.Hiroi, Y.Su, M.Ooi, M.Harada, H.Iikura, H.Hayashida, J. D.Parker, Y.Matsumoto, T.Kamiyama, H.Sato, and Y.Kiyanagi, Rev. Sci. Instrum. 91, 043302 (2020). 10.1063/1.5136034 Google Scholar
- 15) S.Uno, T.Uchida, M.Sekimoto, T.Murakami, K.Miyama, M.Shoji, E.Nakano, and T.Koike, Phys. Procedia 37, 600 (2012). 10.1016/j.phpro.2012.01.035 Google Scholar
- 16) J. D.Parker, M.Harada, K.Hattori, S.Iwaki, S.Kabuki, Y.Kishimoto, H.Kubo, S.Kurosawa, Y.Matsuoka, K.Miuchi, T.Mizumoto, H.Nishimura, T.Oku, T.Sawano, T.Shinohara, J.Suzuki, A.Takada, T.Tanimori, and K.Ueno, Nucl. Instrum. Methods Phys. Res., Sect. A 726, 155 (2013). 10.1016/j.nima.2013.06.001 Google Scholar
- 17) K.Shibata, O.Iwamoto, T.Nakagawa, N.Iwamoto, A.Ichihara, S.Kunieda, S.Chiba, K.Furutaka, N.Otuka, T.Ohsawa, T.Murata, H.Matsunobu, A.Zukeran, S.Kamada, and J.Katakura, J. Nucl. Sci. Technol. 48, 1 (2011) 10.1080/18811248.2011.9711675; Google ScholarA.Zhang, Y.Wei, M.Kumagai, Y.Koma, and T.Koyama, Radiat. Phys. Chem. 72, 455 (2005). 10.1016/j.radphyschem.2004.01.004 Google Scholar