Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 33, 011116 (2021) [6 pages]
Proceedings of the 3rd J-PARC Symposium (J-PARC2019)
Study of Neutron–Nuclear Spin Correlation Term with a Polarized Xe Target
1JAEA, Tokai, Ibaraki 319-1195, Japan
2CROSS, Tokai, Ibaraki 319-1106, Japan
3Dept. of Physics, Nagoya University, Nagoya 464-8602, Japan
4KEK, Tsukuba, Ibaraki 305-0801, Japan
Received January 6, 2020

Study of a correlation term, s · I, of a neutron spin s and a target nuclear spin I is important in investigating fundamental symmetry breaking in neutron-nuclear interactions, because it interferes with parity and time reversal non-conserving terms. Xe is an interesting material because a large parity non-conserving effect around neutron resonance peak has been observed, and also because its spin can be polarize to 10−2–10−1 at pressures of 10−1–100 atm by using a spin-exchange optical-pumping method. For this study, we plan to measure the spin-dependent cross section and neutron spin rotation, which are predicted to depend on neutron energy around the resonance peaks. As a first step, we measured a neutron polarizing ability caused by the spin-dependent cross section at a 9.6 eV s-wave resonance peak of 129Xe when unpolarized neutrons transmit through the polarized Xe target, and obtained a significant value of ∼10−2 as a preliminary result.

©2021 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) A.Yoshimi et al., Phys. Lett. A 304, 13 (2002). 10.1016/S0375-9601(02)01324-5 Google Scholar
  • 2) I. C.Ruset et al., Phys. Rev. Lett. 96, 053002 (2006). 10.1103/PhysRevLett.96.053002 Google Scholar
  • 3) L.Stodolsky, Phys. Lett. B 172, 5 (1986). 10.1016/0370-2693(86)90206-6 Google Scholar
  • 4) Y.Masuda et al., Nucl. Phys. A 478, 737 (1988). 10.1016/0375-9474(88)90912-8 Google Scholar
  • 5) H. M.Shimizu et al., Nucl. Phys. A 552, 293 (1993). 10.1016/0375-9474(93)90494-I Google Scholar
  • 6) J. J.Szymanski et al., Phys. Rev. C 53, R2576 (1996). 10.1103/PhysRevC.53.R2576 Google Scholar
  • 7) V. P.Gudkov, Phys. Rep. 212, 77 (1992). 10.1016/0370-1573(92)90121-F Google Scholar
  • 8) V. E.Bunakov et al., Phys. Lett. B 429, 7 (1998). 10.1016/S0370-2693(98)00462-6 Google Scholar
  • 9) B.Larson et al., Phys. Rev. A 44, 3108 (1991). 10.1103/PhysRevA.44.3108 Google Scholar
  • 10) V. R.Skoy, J. Res. Natl. Inst. Stand. Technol. 110, 471 (2005). 10.6028/jres.110.073 Google Scholar
  • 11) K.Sakai et al., J. Phys.: Conf. Ser. 340, 012037 (2012). 10.1088/1742-6596/340/1/012037 Google Scholar
  • 12) T.Oku et al., JPS Conf. Proc. 8, 036009 (2015). 10.7566/JPSCP.8.036009[Abstract] Google Scholar
  • 13) K.Sakai et al., J. Phys.: Conf. Ser. 528, 012016 (2014). 10.1088/1742-6596/528/1/012016 Google Scholar
  • 14) K.Sakai et al., JPS Conf. Proc. 8, 036015 (2015). 10.7566/JPSCP.8.036015[Abstract] Google Scholar
  • 15) K.Oikawa et al., Nucl. Instrum. Methods Phys. Res., Sect. A 589, 310 (2008). 10.1016/j.nima.2008.02.019 Google Scholar
  • 16) W. E.Lamb, Phys. Rev. 55, 190 (1939). 10.1103/PhysRev.55.190 Google Scholar
  • 17) M. L.Chadwick et al., Nucl. Data Sheets 107, 2931 (2006) http://t2.lanl.gov/data/neutron7.html. 10.1016/j.nds.2006.11.001 Google Scholar