Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 37, 011009 (2022) [8 pages]
Proceedings of the 24th International Spin Symposium (SPIN2021)
Electric Dipole Moment Measurements at Storage Rings
1,2,* for the JEDI and CPEDM Collaborations
1Forschungszentrum Jülich
2RWTH Aachen University, Forschungszentrum Jülich
Received February 14, 2022

Electric Dipole Moments (EDMs) of subatomic particles, are considered as one of the most powerful tools to study CP-violation beyond the Standard Model. Such CP-violating mechanisms are searched for to explain the dominance of matter over anti-matter in our universe. This paper discusses EDM searches of charged hadrons in storage rings.

The document focuses on activities at the existing storage ring COSY at Forschungszentrum Jülich, Germany and the design of a 100 m circumference prototype ring able to demonstrate key technologies and components. These include simultaneous clockwise and counter-clockwise beam operation with electrostatic bending elements and, by adding a magnetic field, the frozen spin technique.

©2022 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) A.Wirzba, J.Bsaisou, and A.Nogga, Int. J. Mod. Phys. E 26, 1740031 (2017). 10.1142/S0218301317400316 Google Scholar
  • 2) J. H.Smith, E. M.Purcell, and N. F.Ramsey, Phys. Rev. 108, 120 (1957). 10.1103/PhysRev.108.120 Google Scholar
  • 3) G. W.Bennett et al., Phys. Rev. D 80, 052008 (2009). 10.1103/PhysRevD.80.052008 Google Scholar
  • 4) V.Anastassopoulos et al., Rev. Sci. Instrum. 87, 115116 (2016). 10.1063/1.4967465 Google Scholar
  • 5) V.Bargmann, L.Michel, and V. L.Telegdi, Phys. Rev. Lett. 2, 435 (1959). 10.1103/PhysRevLett.2.435 Google Scholar
  • 6) D. F.Nelson, A. A.Schupp, R. W.Pidd, and H. R.Crane, Phys. Rev. Lett. 2, 492 (1959). 10.1103/PhysRevLett.2.492 Google Scholar
  • 7) T.Fukuyama and A. J.Silenko, Int. J. Mod. Phys. A 28, 1350147 (2013). 10.1142/S0217751X13501479 Google Scholar
  • 8) W. M.Morse, Y. F.Orlov, and Y. K.Semertzidis, Phys. Rev. ST Accel. Beams 16, 114001 (2013). 10.1103/PhysRevSTAB.16.114001 Google Scholar
  • 9) F.Rathmann, A.Saleev, and N. N.Nikolaev, J. Phys.: Conf. Ser. 447, 012011 (2013). 10.1088/1742-6596/447/1/012011 Google Scholar
  • 10) J.Slim et al., Nucl. Instrum. Methods Phys. Res., Sect. A 828, 116 (2016). 10.1016/j.nima.2016.05.012 Google Scholar
  • 11) M.Vitz, Orbit Response Matrix Analysis for COSY - Model Optimization Using LOCO.Google Scholar
  • 12) A.Saleev, Spin Tune Response to Vertical Orbit Correction at COSY.Google Scholar
  • 13) T.Wagner, Beam-based Alignment at the Cooler Synchrotron (COSY).Google Scholar
  • 14) J.Slim, Towards a Surrogate Computational Tool to Quantify the Systematic Uncertainties in EDM Experiments in Storage Rings.Google Scholar
  • 15) S.Karanth, IPAC2021, 2021, p. 3057. 10.18429/JACoW-IPAC2021-WEPAB188 Google Scholar
  • 16) A. J.Silenko, Relativistic Spin Dynamics Conditioned by Dark Matter Axions, 9 (2021).Google Scholar
  • 17) O.Javakhishvili, Pellet Target Development for Storage Ring EDM Polarimetry.Google Scholar
  • 18) R.Shankar, Optimisation of Spin-coherence Time in a Prototype Storage Ring for Electric Dipole Moment Measurements.Google Scholar
  • 19) S.Siddique, Simulations of Beam Dynamics and Beam Lifetime for the Prototype EDM Ring.Google Scholar
  • 20) F.Abusaif et al., Storage Ring to Search for Electric Dipole Moments of Charged Particles: Feasibility Study. CERN Yellow Reports: Monographs (2021).Google Scholar