JPS Conf. Proc. 37, 020606 (2022) [5 pages]
Proceedings of the 24th International Spin Symposium (SPIN2021)
The Search for Electric Dipole Moments of Charged Particles Using Storage Rings
* on behalf of the JEDI Collaboration
University of Ferrara, 44100 Ferrara, Italy
Received March 15, 2022

One of the major problems of modern particle physics is the inability of the Standard Model (SM) of Particle Physics to explain the matter-antimatter asymmetry in the Universe. Therefore, the pursuit of physics beyond the SM is required and one of the necessary conditions for the appearance of the matter-antimatter asymmetry is the violation of the CP symmetry. Permanent electric dipole moments (EDMs) of particles violate CP symmetry, so EDM measurements of fundamental particles are able to probe new sources of CP-violation.

Storage rings make it possible to measure EDMs of charged particles by observing the effect of the EDM on the spin motion in the ring. The Cooler Synchrotron COSY at the Forschungszentrum Julich provides polarized protons and deuterons with momenta up to 3.7 GeV/s, which is an ideal testing ground and starting point for the JEDI collaboration (Jülich Electric Dipole moment Investigations) for such an experimental program.

The preliminary results of the first direct (precursor) measurements of the deuteron EDM in COSY are presented. This is the first stage of the experimental program to determine the EDMs of proton and deuteron using storage rings [1], [2].

©2022 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.


  • 1) F.Abusaif et al., CERN Yellow Report 257 (2021) [DOI: 10.23731/CYRM-2021-003].Google Scholar
  • 2) F.Rathmann, N. N.Nikolaev, and J.Slim, Phys. Rev. Accel. Beams 23, 024601 (2020). 10.1103/PhysRevAccelBeams.23.024601 Google Scholar
  • 3) W.Bernreuther, Lect. Notes Phys. 591, 237 (2002). 10.1007/3-540-47895-7_7 Google Scholar
  • 4) WMAP Collaboration, Astrophys. J. Suppl. 148, 1 (2003). 10.1086/377253 Google Scholar
  • 5) V.Barger, J. P.Kneller, H.-S.Lee, D.Marfatia, and G.Steigman, Phys. Lett. B 566, 8 (2003). 10.1016/S0370-2693(03)00800-1 Google Scholar
  • 6) A. D.Sakharov, Pis’ma Z. Eksp. Teor. Fiz. 5, 32 (1967).Google Scholar
  • 7) T.Fukuyama and A. J.Silinko, Int. J. Mod. Phys. A 28, 1350147 (2013). 10.1142/S0217751X13501479 Google Scholar
  • 8) A.Saleev et al., Phys. Rev. ST Accel. Beams 20, 072801 (2017). 10.1103/PhysRevAccelBeams.20.072801 Google Scholar
  • 9) J.Slim et al., Nucl. Instrum. Methods Phys. Res., Sect. A 828, 116 (2016). 10.1016/j.nima.2016.05.012 Google Scholar
  • 10) Z.Bagdasarian, S.Bertelli, and D.Chiladze, Phys. Rev. ST Accel. Beams 17, 052803 (2014). 10.1103/PhysRevSTAB.17.052803 Google Scholar
  • 11) G.Guidoboni et al., Phys. Rev. Lett. 117, 054801 (2016). 10.1103/PhysRevLett.117.054801 Google Scholar
  • 12) N.Hempelmann et al., Phys. Rev. Lett. 119, 014801 (2017). 10.1103/PhysRevLett.119.014801 Google Scholar
  • 13) N.Hempelmann et al., Phys. Rev. Accel. Beams 21, 042002 (2018). 10.1103/PhysRevAccelBeams.21.042002 Google Scholar
  • 14) N.Hempelmann, Ph.D. Thesis (2018).Google Scholar