JPS Conf. Proc. 38, 011002 (2023) [5 pages]
Proceedings of the 29th International Conference on Low Temperature Physics (LT29)
Disorder Induced Anomalous Thermal Hall Effect in Chiral Phases of Superfluid 3He
1Department of Physics, Royal Holloway University of London, Egham, Surrey, U.K.
2Department of Physics, Montana State University, Bozeman, MT, U.S.A.
3Department of Physics, Northwestern University, Evanston, IL, U.S.A.
Received August 19, 2022

NMR experiments on liquid 3He infused into uniaxially anisotropic silica aerogels show the stabilisation of two equal-spin-pairing chiral phases on cooling from the normal phase. The alignment of the chiral axis relative to the anisotropy axis for these phases is predicted to depend upon temperature. A chiral A-like phase is also stabilized when 3He is confined to a slab of thickness \(D \sim \xi \), the superfluid coherence length. For both types of confinement, scattering of quasiparticles by the random potential —aerogel or surface— is pair breaking and generates a sub-gap density of quasiparticle states. The random field also conspires with the chiral order parameter to generate skew scattering of quasiparticles in the plane normal to the chiral axis. This scattering mechanism leads to anomalous thermal Hall transport for nonequilibrium quasiparticles driven by a thermal gradient. We report theoretical results for the anomalous thermal Hall conductivity for theoretical models for chiral phases of 3He in both anisotropic aerogel and slabs. The anomalous thermal Hall effect (ATHE) provides an important tool to identify signatures of broken time-reversal and mirror symmetries and topology in chiral superconductors/superfluids.

©2023 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) J.Pollanen, K. R.Shirer, S.Blinstein, J. P.Davis, H.Choi, T. M.Lippman, W. P.Halperin, and L. B.Lurio, J. Non-Cryst. Solids 354, 4668 (2008). 10.1016/j.jnoncrysol.2008.05.047 Google Scholar
  • 2) P. W.Anderson and P.Morel, Phys. Rev. 123, 1911 (1961). 10.1103/PhysRev.123.1911 Google Scholar
  • 3) J.Pollanen, J. I. A.Li, C. A.Collett, W. J.Gannon, W. P.Halperin, and J. A.Sauls, Nat. Phys. 8, 317 (2012). 10.1038/nphys2220 Google Scholar
  • 4) P.Sharma and J. A.Sauls, Physica B 329–333, 313 (2003). 10.1016/S0921-4526(02)02066-5 Google Scholar
  • 5) L. V.Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1965). English: Sov. Phys. JETP 20, 1018 (1965).Google Scholar
  • 6) G.Eilenberger, Z. Phys. A 214, 195 (1968). 10.1007/BF01379803 Google Scholar
  • 7) A. I.Larkin and Yu. N.Ovchinnikov, Sov. Phys. JETP 28, 1200 (1969).Google Scholar
  • 8) J. W.Serene and D.Rainer, Phys. Rep. 101, 221 (1983). 10.1016/0370-1573(83)90051-0 Google Scholar
  • 9) V.Ngampruetikorn and J. A.Sauls, Phys. Rev. Lett. 124, 157002 (2020). 10.1103/PhysRevLett.124.157002 Google Scholar
  • 10) A.Vorontsov and J. A.Sauls, Phys. Rev. B 68, 064508 (2003). 10.1103/PhysRevB.68.064508 Google Scholar
  • 11) P. J.Heikkinen, A.Casey, L. V.Levitin, X.Rojas, A.Vorontsov, P.Sharma, N.Zhelev, J. M.Parpia, and J.Saunders, Nat. Commun. 12, 1574 (2021). 10.1038/s41467-021-21831-y Google Scholar
  • 12) E. V.Thuneberg, S.-K.Yip, M.Fogelström, and J. A.Sauls, Phys. Rev. Lett. 80, 2861 (1998). 10.1103/PhysRevLett.80.2861 Google Scholar
  • 13) M. J.Graf, S.-K.Yip, J. A.Sauls, and D.Rainer, Phys. Rev. B 53, 15147 (1996). 10.1103/PhysRevB.53.15147 Google Scholar
  • 14) P.Sharma and J. A.Sauls, J. Low Temp. Phys. 208, 341 (2022). 10.1007/s10909-021-02657-w Google Scholar
  • 15) J. A.Sauls, Phys. Rev. B 84, 214509 (2011). 10.1103/PhysRevB.84.214509 Google Scholar
  • 16) S.-K.Yip and J. A.Sauls, J. Low Temp. Phys. 86, 257 (1992). 10.1007/BF01151804 Google Scholar