JPS Conf. Proc. 38, 011036 (2023) [4 pages]
Proceedings of the 29th International Conference on Low Temperature Physics (LT29)
Fabrication of Se-doped PtBi2 Thin Film Devices
1Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
2Center for Spintronics Research Network, Osaka University, Toyonaka, Osaka 560-8531, Japan
3Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
Received July 13, 2022

We fabricated Se-doped PtBi2 (Pt(Bi1−xSex)2) thin film devices using the mechanical exfoliation technique. While the bulk Pt(Bi1−xSex)2 with x = 0.06 shows the superconductivity below the critical temperature Tc = 2.3 K, Tc of the thin film devices decreases with decreasing the thickness. The present result demonstrates that Pt(Bi1−xSex)2 is a new family of van der Waals type superconductor.

©2023 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Science 306, 666 (2004). 10.1126/science.1102896 Google Scholar
  • 2) K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, M. I.Katsnelson, I. V.Grigorieva, S. V.Dubonos, and A. A.Firsov, Nature 438, 197 (2005). 10.1038/nature04233 Google Scholar
  • 3) Y.Zhang, Y.-W.Tan, H. L.Stormer, and P.Kim, Nature 438, 201 (2005). 10.1038/nature04235 Google Scholar
  • 4) K. S.Novoselov, D.Jiang, F.Schedin, T. J.Booth, V. V.Khotkevich, S. V.Morozov, and A. K.Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005). 10.1073/pnas.0502848102 Google Scholar
  • 5) J. T.Ye, Y. J.Zhang, R.Akashi, M. S.Bahramy, R.Arita, and Y.Iwasa, Science 338, 1193 (2012). 10.1126/science.1228006 Google Scholar
  • 6) J.-F.Ge, Z.-L.Liu, C.Liu, C.-L.Gao, D.Qian, Q.-K.Xue, Y.Liu, and J.-F.Jia, Nat. Mater. 14, 285 (2015). 10.1038/nmat4153 Google Scholar
  • 7) J.Shiogai, Y.Ito, T.Mitsuhashi, T.Nojima, and A.Tsukazaki, Nat. Phys. 12, 42 (2016). 10.1038/nphys3530 Google Scholar
  • 8) C.Gong, L.Li, Z.Li, H.Ji, A.Stern, Y.Xia, T.Cao, W.Bao, C.Wang, Y.Wang, Z. Q.Qiu, R. J.Cava, S. G.Louie, J.Xia, and X.Zhang, Nature 546, 265 (2017). 10.1038/nature22060 Google Scholar
  • 9) B.Huang, G.Clark, E.Navarro-Moratalla, D. R.Klein, R.Cheng, K. L.Seyler, D.Zhong, E.Schmidgall, M. A.McGuire, D. H.Cobden, W.Yao, D.Xiao, P.Jarillo-Herrero, and X.Xu, Nature 546, 270 (2017). 10.1038/nature22391 Google Scholar
  • 10) Z.Wang, T.Zhang, M.Ding, B.Dong, Y.Li, M.Chen, X.Li, J.Huang, H.Wang, X.Zhao, Y.Li, D.Li, C.Jia, L.Sun, H.Guo, Y.Ye, D.Sun, Y.Chen, T.Yang, J.Zhang, S.Ono, Z.Han, and Z.Zhang, Nat. Nanotechnol. 13, 554 (2018). 10.1038/s41565-018-0186-z Google Scholar
  • 11) Z.Fei, B.Huang, P.Malinowski, W.Wang, T.Song, J.Sanchez, W.Yao, D.Xiao, X.Zhu, A. F.May, W.Wu, D. H.Cobden, J.-H.Chu, and X.Xu, Nat. Mater. 17, 778 (2018). 10.1038/s41563-018-0149-7 Google Scholar
  • 12) Y.Deng, Y.Yu, Y.Song, J.Zhang, N. Z.Wang, Z.Sun, Y.Yi, Y. Z.Wu, S.Wu, J.Zhu, J.Wang, X. H.Chen, and Y.Zhang, Nature 563, 94 (2018). 10.1038/s41586-018-0626-9 Google Scholar
  • 13) N.Tombros, C.Jozsa, M.Popinciuc, H. T.Jonkman, and B. J.van Wees, Nature 448, 571 (2007). 10.1038/nature06037 Google Scholar
  • 14) W.-J.Yan, E.Sagasta, M.Ribeiro, Y.Niimi, L. E.Hueso, and F.Casanova, Nat. Commun. 8, 661 (2017). 10.1038/s41467-017-00563-y Google Scholar
  • 15) C. K.Safeer, J.Ingla-Aynés, F.Herling, J. H.Garcia, M.Vila, N.Ontoso, M. R.Calvo, S.Roche, L. E.Hueso, and F.Casanova, Nano Lett. 19, 1074 (2019). 10.1021/acs.nanolett.8b04368 Google Scholar
  • 16) C. K.Safeer, N.Ontoso, J.Ingla-Aynés, F.Herling, V. T.Pham, A.Kurzmann, K.Ensslin, A.Chuvilin, I.Robredo, M. G.Vergniory, F.de Juan, L. E.Hueso, M. R.Calvo, and F.Casanova, Nano Lett. 19, 8758 (2019). 10.1021/acs.nanolett.9b03485 Google Scholar
  • 17) D.Khokhriakov, A. M.Hoque, B.Karpiak, and S. P.Dash, Nat. Commun. 11, 3657 (2020). 10.1038/s41467-020-17481-1 Google Scholar
  • 18) E.Preciado, F. J. R.Schülein, A. E.Nguyen, D.Barroso, M.Isarraraz, G.von Son, I.-H.Lu, W.Michailow, B.Möller, V.Klee, J.Mann, A.Wixforth, L.Bartels, and H. J.Krenner, Nat. Commun. 6, 8593 (2015). 10.1038/ncomms9593 Google Scholar
  • 19) S.Zheng, H.Zhang, Z.Feng, Y.Yu, R.Zhang, C.Sun, J.Liu, X.Duan, W.Pang, and D.Zhang, Appl. Phys. Lett. 109, 183110 (2016). 10.1063/1.4967192 Google Scholar
  • 20) M.Yokoi, S.Fujiwara, T.Kawamura, T.Arakawa, K.Aoyama, H.Fukuyama, K.Kobayashi, and Y.Niimi, Sci. Adv. 6, eaba1377 (2020). 10.1126/sciadv.aba1377 Google Scholar
  • 21) G.Shipunov, I.Kovalchuk, B. R.Piening, V.Labracherie, A.Veyrat, D.Wolf, A.Lubk, S.Subakti, R.Giraud, J.Dufouleur, S.Shokri, F.Caglieris, C.Hess, D. V.Efremov, B.Büchner, and S.Aswartham, Phys. Rev. Mater. 4, 124202 (2020). 10.1103/PhysRevMaterials.4.124202 Google Scholar
  • 22) K.Kudo, H. Y.Nguyen, C.-g.Oh, K.Takaki, and M.Nohara, J. Phys. Soc. Jpn. 90, 063706 (2021). 10.7566/JPSJ.90.063706[Abstract] Google Scholar
  • 23) K.Takaki, M.Yamamoto, M.Nakajima, T.Takeuchi, H. Y.Nguyen, M.Nohara, Y.Kishioji, T.Fujii, K.Yoshino, S.Miyasaka, and K.Kudo, J. Phys. Soc. Jpn. 91, 034703 (2022). 10.7566/JPSJ.91.034703[Abstract] Google Scholar
  • 24) H.Taniguchi, S.Suzuki, T.Arakawa, H.Yoshida, Y.Niimi, and K.Kobayashi, AIP Adv. 8, 025010 (2018). 10.1063/1.5016428 Google Scholar
  • 25) H.Taniguchi, M.Watanabe, M.Tokuda, S.Suzuki, E.Imada, T.Ibe, T.Arakawa, H.Yoshida, H.Ishizuka, K.Kobayashi, and Y.Niimi, Sci. Rep. 10, 2525 (2020). 10.1038/s41598-020-59578-z Google Scholar
  • 26) M.Watanabe, S.-H.Lee, T.Asano, T.Ibe, M.Tokuda, H.Taniguchi, D.Ueta, Y.Okada, K.Kobayashi, and Y.Niimi, Appl. Phys. Lett. 117, 072403 (2020). 10.1063/5.0007517 Google Scholar
  • 27) R.Nakamura, M.Tokuda, M.Watanabe, M.Nakajima, K.Kobayashi, and Y.Niimi, Phys. Rev. B 104, 165412 (2021). 10.1103/PhysRevB.104.165412 Google Scholar