Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 38, 011062 (2023) [6 pages]
Proceedings of the 29th International Conference on Low Temperature Physics (LT29)
Momentum-Space Analysis of Topological Superconductivity in Two-Dimensional Quasicrystals
1Department of Physics and Engineering Physics, and Centre for Quantum Topology and Its Applications (quanTA), University of Saskatchewan, 116 Science Place, Saskatoon, SK, S7N 5E2, Canada
2Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
3Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
4Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
Received July 26, 2022

We self-consistently solve the Bogoliubov–de Gennes equations on the tight-binding model for s-wave topological superconductivity (TSC) in two-dimensional (2D) quasicrystals (QCs). For the mean fields, we consider not only the superconducting order parameter but also the spin-dependent Hartree potential. We calculate the topological invariant for 2D Ammann–Beenker (AB) QCs to examine the realization of TSC in QCs. We demonstrate TSC in QCs whose distribution of the superconducting order parameter reflects the symmetry of the structure of AB QCs. Furthermore, we perform momentum-space analysis by calculating the spectral function. We identify specific wave numbers which are to be related to the topological phase transition in AB QCs.

©2023 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) J.Alicea, Rep. Prog. Phys. 75, 076501 (2012). 10.1088/0034-4885/75/7/076501 Google Scholar
  • 2) M.Sato and Y.Ando, Rep. Prog. Phys. 80, 076501 (2017). 10.1088/1361-6633/aa6ac7 Google Scholar
  • 3) R.Ghadimi, T.Sugimoto, K.Tanaka, and T.Tohyama, Phys. Rev. B 104, 144511 (2021). 10.1103/PhysRevB.104.144511 Google Scholar
  • 4) S.Tewari, J. D.Sau, and S.Das Sarma, Ann. Phys. 325, 219 (2010). 10.1016/j.aop.2009.11.003 Google Scholar
  • 5) J. D.Sau et al., Phys. Rev. Lett. 104, 040502 (2010). 10.1103/PhysRevLett.104.040502 Google Scholar
  • 6) D.Shechtman et al., Phys. Rev. Lett. 53, 1951 (1984). 10.1103/PhysRevLett.53.1951 Google Scholar
  • 7) D.Levine and P. J.Steinhardt, Phys. Rev. Lett. 53, 2477 (1984). 10.1103/PhysRevLett.53.2477 Google Scholar
  • 8) D.Levine and P. J.Steinhardt, Phys. Rev. B 34, 596 (1986). 10.1103/PhysRevB.34.596 Google Scholar
  • 9) J. E. S.Socolar and P. J.Steinhardt, Phys. Rev. B 34, 617 (1986). 10.1103/PhysRevB.34.617 Google Scholar
  • 10) Y. E.Kraus et al., Phys. Rev. Lett. 109, 106402 (2012). 10.1103/PhysRevLett.109.106402 Google Scholar
  • 11) M.Verbin et al., Phys. Rev. Lett. 110, 076403 (2013). 10.1103/PhysRevLett.110.076403 Google Scholar
  • 12) K. A.Madsen, E. J.Bergholtz, and P. W.Brouwer, Phys. Rev. B 88, 125118 (2013). 10.1103/PhysRevB.88.125118 Google Scholar
  • 13) A.Dareau et al., Phys. Rev. Lett. 119, 215304 (2017). 10.1103/PhysRevLett.119.215304 Google Scholar
  • 14) K.Kamiya et al., Nat. Commun. 9, 154 (2018). 10.1038/s41467-017-02667-x Google Scholar
  • 15) M.Sato, Y.Takahashi, and S.Fujimoto, Phys. Rev. Lett. 103, 020401 (2009). 10.1103/PhysRevLett.103.020401 Google Scholar
  • 16) M.Sato, Y.Takahashi, and S.Fujimoto, Phys. Rev. B 82, 134521 (2010). 10.1103/PhysRevB.82.134521 Google Scholar
  • 17) R. N.Araújo and E. C.Andrade, Phys. Rev. B 100, 014510 (2019). 10.1103/PhysRevB.100.014510 Google Scholar
  • 18) F. P. M.Beenker, T.H.-Report, 82-WSK-04 (Eindhoven University of Technology, Netherlands, 1982).Google Scholar
  • 19) B.Grünbaum and G. C.Shephard, Tilings and Patterns (W. H. Freeman & Co., New York, 1987).Google Scholar
  • 20) R.Ammann, B.Grünbaum, and G. C.Shephard, Discrete Comput. Geom. 8, 1 (1992). 10.1007/BF02293033 Google Scholar
  • 21) S. L.Goertzen, K.Tanaka, and Y.Nagai, Phys. Rev. B 95, 064509 (2017). 10.1103/PhysRevB.95.064509 Google Scholar
  • 22) Y.Ohashi, Phys. Rev. A 83, 063611 (2011). 10.1103/PhysRevA.83.063611 Google Scholar
  • 23) T. A.Loring and M. B.Hastings, Europhys. Lett. 92, 67004 (2010). 10.1209/0295-5075/92/67004 Google Scholar
  • 24) T. A.Loring, J. Math. Phys. 60, 081903 (2019). 10.1063/1.5083051 Google Scholar
  • 25) M. A.Bandres, M. C.Rechtsman, and M.Segev, Phys. Rev. X 6, 011016 (2016). 10.1103/PhysRevX.6.011016 Google Scholar
  • 26) I. C.Fulga, D. I.Pikulin, and T. A.Loring, Phys. Rev. Lett. 116, 257002 (2016). 10.1103/PhysRevLett.116.257002 Google Scholar
  • 27) H.Huang and F.Liu, Phys. Rev. Lett. 121, 126401 (2018). 10.1103/PhysRevLett.121.126401 Google Scholar
  • 28) H.Huang and F.Liu, Phys. Rev. B 98, 125130 (2018). 10.1103/PhysRevB.98.125130 Google Scholar
  • 29) H.Huang and F.Liu, Phys. Rev. B 100, 085119 (2019). 10.1103/PhysRevB.100.085119 Google Scholar
  • 30) P. G.de Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, CO, 1999).Google Scholar
  • 31) M.Duneau, J. Phys. A 22, 4549 (1989). 10.1088/0305-4470/22/21/017 Google Scholar