Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 38, 011065 (2023) [6 pages]
Proceedings of the 29th International Conference on Low Temperature Physics (LT29)
Self-consistent Study of Non-Abelian Topological Superconductivity in Quasicrystals
1Department of Physics and Engineering Physics, and Centre for Quantum Topology and Its Applications (quanTA), University of Saskatchewan, SK, Canada S7N 5E2
2Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
3Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
4Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
Received July 30, 2022

Quasicrystals are emerging topological materials which defy all the laws of crystallography, with aperiodic long-range order and higher-dimensional symmetry. We study topological superconductivity (TSC) with broken time-reversal symmetry in prototypal two-dimensional quasicrystals, Penrose and Ammann–Beenker quasicrystals. By solving the Bogoliubov–de Gennes equations self-consistently for the mean fields, we show the stable occurrence of TSC in both Penrose and Ammann–Beenker quasicrystals. The topological nature of TSC in a quasicrystal is signified by the Bott index. We confirm the appearance of zero-energy Majorana fermions at surface boundaries when the Bott index is unity, in accordance with the bulk-boundary correspondence and the non-Abelian character of the system.

©2023 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) Y. E.Kraus, Z.Ringel, and O.Zilberberg, Phys. Rev. Lett. 111, 226401 (2013). 10.1103/PhysRevLett.111.226401 Google Scholar
  • 2) Y. E.Kraus and O.Zilberberg, Nat. Phys. 12, 624 (2016). 10.1038/nphys3784 Google Scholar
  • 3) J.Li, R.-L.Chu, J. K.Jain, and S.-Q.Shen, Phys. Rev. Lett. 102, 136806 (2009). 10.1103/PhysRevLett.102.136806 Google Scholar
  • 4) A.Agarwala and V. B.Shenoy, Phys. Rev. Lett. 118, 236402 (2017). 10.1103/PhysRevLett.118.236402 Google Scholar
  • 5) R.Chen, C.-Z.Chen, J.-H.Gao, B.Zhou, and D.-H.Xu, Phys. Rev. Lett. 124, 036803 (2020). 10.1103/PhysRevLett.124.036803 Google Scholar
  • 6) M.Verbin, O.Zilberberg, Y. E.Kraus, Y.Lahini, and Y.Silberberg, Phys. Rev. Lett. 110, 076403 (2013). 10.1103/PhysRevLett.110.076403 Google Scholar
  • 7) M. A.Bandres, M. C.Rechtsman, and M.Segev, Phys. Rev. X 6, 011016 (2016). 10.1103/PhysRevX.6.011016 Google Scholar
  • 8) A.Dareau et al., Phys. Rev. Lett. 119, 215304 (2017). 10.1103/PhysRevLett.119.215304 Google Scholar
  • 9) L. C.Collins, T. G.Witte, R.Silverman, D. B.Green, and K. K.Gomes, Nat. Commun. 8, 15961 (2017). 10.1038/ncomms15961 Google Scholar
  • 10) S.Sakai, N.Takemori, A.Koga, and R.Arita, Phys. Rev. B 95, 024509 (2017). 10.1103/PhysRevB.95.024509 Google Scholar
  • 11) S.Sakai and R.Arita, Phys. Rev. Res. 1, 022002(R) (2019). 10.1103/PhysRevResearch.1.022002 Google Scholar
  • 12) R. N.Araújo and E. C.Andrade, Phys. Rev. B 100, 014510 (2019). 10.1103/PhysRevB.100.014510 Google Scholar
  • 13) K.Kamiya et al., Nat. Commun. 9, 154 (2018). 10.1038/s41467-017-02667-x Google Scholar
  • 14) I. C.Fulga, D. I.Pikulin, and T. A.Loring, Phys. Rev. Lett. 116, 257002 (2016). 10.1103/PhysRevLett.116.257002 Google Scholar
  • 15) D.Varjas et al., Phys. Rev. Lett. 123, 196401 (2019). 10.1103/PhysRevLett.123.196401 Google Scholar
  • 16) R.Ghadimi, T.Sugimoto, and T.Tohyama, J. Phys. Soc. Jpn. 86, 114707 (2017). 10.7566/JPSJ.86.114707[Abstract] Google Scholar
  • 17) M.Sato, Y.Takahashi, and S.Fujimoto, Phys. Rev. Lett. 103, 020401 (2009). 10.1103/PhysRevLett.103.020401 Google Scholar
  • 18) M.Sato, Y.Takahashi, and S.Fujimoto, Phys. Rev. B 82, 134521 (2010). 10.1103/PhysRevB.82.134521 Google Scholar
  • 19) R.Ghadimi, T.Sugimoto, K.Tanaka, and T.Tohyama, Phys. Rev. B 104, 144511 (2021). 10.1103/PhysRevB.104.144511 Google Scholar
  • 20) P. G.de Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, CO, 1999).Google Scholar
  • 21) K.Björnson and A. M.Black-Schaffer, Phys. Rev. B 88, 024501 (2013). 10.1103/PhysRevB.88.024501 Google Scholar
  • 22) K.Björnson and A. M.Black-Schaffer, Phys. Rev. B 91, 214514 (2015). 10.1103/PhysRevB.91.214514 Google Scholar
  • 23) E. D. B.Smith, K.Tanaka, and Y.Nagai, Phys. Rev. B 94, 064515 (2016). 10.1103/PhysRevB.94.064515 Google Scholar
  • 24) S. L.Goertzen, K.Tanaka, and Y.Nagai, Phys. Rev. B 95, 064509 (2017). 10.1103/PhysRevB.95.064509 Google Scholar
  • 25) G. C.Ménard et al., Nat. Commun. 8, 2040 (2017). 10.1038/s41467-017-02192-x Google Scholar
  • 26) A. P.Schnyder, S.Ryu, A.Furusaki, and A. W. W.Ludwig, Phys. Rev. B 78, 195125 (2008). 10.1103/PhysRevB.78.195125 Google Scholar
  • 27) D. J.Thouless, M.Kohmoto, M. P.Nightingale, and M.den Nijs, Phys. Rev. Lett. 49, 405 (1982). 10.1103/PhysRevLett.49.405 Google Scholar
  • 28) T. A.Loring and M. B.Hastings, Europhys. Lett. 92, 67004 (2010). 10.1209/0295-5075/92/67004 Google Scholar
  • 29) H.Huang and F.Liu, Phys. Rev. Lett. 121, 126401 (2018). 10.1103/PhysRevLett.121.126401 Google Scholar
  • 30) H.Huang and F.Liu, Phys. Rev. B 98, 125130 (2018). 10.1103/PhysRevB.98.125130 Google Scholar
  • 31) H.Huang and F.Liu, Phys. Rev. B 100, 085119 (2019). 10.1103/PhysRevB.100.085119 Google Scholar
  • 32) N. G.de Bruijn, Indag. Math. Proc. Ser. A 84, 39 (1981). Google Scholar
  • 33) H.Tsunetsugu, T.Fujiwara, K.Ueda, and T.Tokihiro, Phys. Rev. B 43, 8879 (1991). 10.1103/PhysRevB.43.8879 Google Scholar
  • 34) D.Levine and P. J.Steinhardt, Phys. Rev. B 34, 596 (1986). 10.1103/PhysRevB.34.596 Google Scholar
  • 35) C.Cai, L.Liao, and X.Fu, Phys. Lett. A 383, 2213 (2019). 10.1016/j.physleta.2019.04.020 Google Scholar
  • 36) R.Ghadimi, T.Sugimoto, and T.Tohyama, Phys. Rev. B 102, 224201 (2020). 10.1103/PhysRevB.102.224201 Google Scholar
  • 37) J. E. S.Socolar, Phys. Rev. B 39, 10519 (1989). 10.1103/PhysRevB.39.10519 Google Scholar
  • 38) M.Duneau, R.Mosseri, and C.Oguey, J. Phys. A 22, 4549 (1989). 10.1088/0305-4470/22/21/017 Google Scholar
  • 39) M.Kohmoto and B.Sutherland, Phys. Rev. Lett. 56, 2740 (1986). 10.1103/PhysRevLett.56.2740 Google Scholar