- Full text:
- PDF (eReader) / PDF (Download) (1394 kB)
Quasicrystals are emerging topological materials which defy all the laws of crystallography, with aperiodic long-range order and higher-dimensional symmetry. We study topological superconductivity (TSC) with broken time-reversal symmetry in prototypal two-dimensional quasicrystals, Penrose and Ammann–Beenker quasicrystals. By solving the Bogoliubov–de Gennes equations self-consistently for the mean fields, we show the stable occurrence of TSC in both Penrose and Ammann–Beenker quasicrystals. The topological nature of TSC in a quasicrystal is signified by the Bott index. We confirm the appearance of zero-energy Majorana fermions at surface boundaries when the Bott index is unity, in accordance with the bulk-boundary correspondence and the non-Abelian character of the system.

References
- 1) Y. E.Kraus, Z.Ringel, and O.Zilberberg, Phys. Rev. Lett. 111, 226401 (2013). 10.1103/PhysRevLett.111.226401 Google Scholar
- 2) Y. E.Kraus and O.Zilberberg, Nat. Phys. 12, 624 (2016). 10.1038/nphys3784 Google Scholar
- 3) J.Li, R.-L.Chu, J. K.Jain, and S.-Q.Shen, Phys. Rev. Lett. 102, 136806 (2009). 10.1103/PhysRevLett.102.136806 Google Scholar
- 4) A.Agarwala and V. B.Shenoy, Phys. Rev. Lett. 118, 236402 (2017). 10.1103/PhysRevLett.118.236402 Google Scholar
- 5) R.Chen, C.-Z.Chen, J.-H.Gao, B.Zhou, and D.-H.Xu, Phys. Rev. Lett. 124, 036803 (2020). 10.1103/PhysRevLett.124.036803 Google Scholar
- 6) M.Verbin, O.Zilberberg, Y. E.Kraus, Y.Lahini, and Y.Silberberg, Phys. Rev. Lett. 110, 076403 (2013). 10.1103/PhysRevLett.110.076403 Google Scholar
- 7) M. A.Bandres, M. C.Rechtsman, and M.Segev, Phys. Rev. X 6, 011016 (2016). 10.1103/PhysRevX.6.011016 Google Scholar
- 8) A.Dareau et al., Phys. Rev. Lett. 119, 215304 (2017). 10.1103/PhysRevLett.119.215304 Google Scholar
- 9) L. C.Collins, T. G.Witte, R.Silverman, D. B.Green, and K. K.Gomes, Nat. Commun. 8, 15961 (2017). 10.1038/ncomms15961 Google Scholar
- 10) S.Sakai, N.Takemori, A.Koga, and R.Arita, Phys. Rev. B 95, 024509 (2017). 10.1103/PhysRevB.95.024509 Google Scholar
- 11) S.Sakai and R.Arita, Phys. Rev. Res. 1, 022002(R) (2019). 10.1103/PhysRevResearch.1.022002 Google Scholar
- 12) R. N.Araújo and E. C.Andrade, Phys. Rev. B 100, 014510 (2019). 10.1103/PhysRevB.100.014510 Google Scholar
- 13) K.Kamiya et al., Nat. Commun. 9, 154 (2018). 10.1038/s41467-017-02667-x Google Scholar
- 14) I. C.Fulga, D. I.Pikulin, and T. A.Loring, Phys. Rev. Lett. 116, 257002 (2016). 10.1103/PhysRevLett.116.257002 Google Scholar
- 15) D.Varjas et al., Phys. Rev. Lett. 123, 196401 (2019). 10.1103/PhysRevLett.123.196401 Google Scholar
- 16) R.Ghadimi, T.Sugimoto, and T.Tohyama, J. Phys. Soc. Jpn. 86, 114707 (2017). 10.7566/JPSJ.86.114707[Abstract] Google Scholar
- 17) M.Sato, Y.Takahashi, and S.Fujimoto, Phys. Rev. Lett. 103, 020401 (2009). 10.1103/PhysRevLett.103.020401 Google Scholar
- 18) M.Sato, Y.Takahashi, and S.Fujimoto, Phys. Rev. B 82, 134521 (2010). 10.1103/PhysRevB.82.134521 Google Scholar
- 19) R.Ghadimi, T.Sugimoto, K.Tanaka, and T.Tohyama, Phys. Rev. B 104, 144511 (2021). 10.1103/PhysRevB.104.144511 Google Scholar
- 20) P. G.de Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, CO, 1999).Google Scholar
- 21) K.Björnson and A. M.Black-Schaffer, Phys. Rev. B 88, 024501 (2013). 10.1103/PhysRevB.88.024501 Google Scholar
- 22) K.Björnson and A. M.Black-Schaffer, Phys. Rev. B 91, 214514 (2015). 10.1103/PhysRevB.91.214514 Google Scholar
- 23) E. D. B.Smith, K.Tanaka, and Y.Nagai, Phys. Rev. B 94, 064515 (2016). 10.1103/PhysRevB.94.064515 Google Scholar
- 24) S. L.Goertzen, K.Tanaka, and Y.Nagai, Phys. Rev. B 95, 064509 (2017). 10.1103/PhysRevB.95.064509 Google Scholar
- 25) G. C.Ménard et al., Nat. Commun. 8, 2040 (2017). 10.1038/s41467-017-02192-x Google Scholar
- 26) A. P.Schnyder, S.Ryu, A.Furusaki, and A. W. W.Ludwig, Phys. Rev. B 78, 195125 (2008). 10.1103/PhysRevB.78.195125 Google Scholar
- 27) D. J.Thouless, M.Kohmoto, M. P.Nightingale, and M.den Nijs, Phys. Rev. Lett. 49, 405 (1982). 10.1103/PhysRevLett.49.405 Google Scholar
- 28) T. A.Loring and M. B.Hastings, Europhys. Lett. 92, 67004 (2010). 10.1209/0295-5075/92/67004 Google Scholar
- 29) H.Huang and F.Liu, Phys. Rev. Lett. 121, 126401 (2018). 10.1103/PhysRevLett.121.126401 Google Scholar
- 30) H.Huang and F.Liu, Phys. Rev. B 98, 125130 (2018). 10.1103/PhysRevB.98.125130 Google Scholar
- 31) H.Huang and F.Liu, Phys. Rev. B 100, 085119 (2019). 10.1103/PhysRevB.100.085119 Google Scholar
- 32) N. G.de Bruijn, Indag. Math. Proc. Ser. A 84, 39 (1981). Google Scholar
- 33) H.Tsunetsugu, T.Fujiwara, K.Ueda, and T.Tokihiro, Phys. Rev. B 43, 8879 (1991). 10.1103/PhysRevB.43.8879 Google Scholar
- 34) D.Levine and P. J.Steinhardt, Phys. Rev. B 34, 596 (1986). 10.1103/PhysRevB.34.596 Google Scholar
- 35) C.Cai, L.Liao, and X.Fu, Phys. Lett. A 383, 2213 (2019). 10.1016/j.physleta.2019.04.020 Google Scholar
- 36) R.Ghadimi, T.Sugimoto, and T.Tohyama, Phys. Rev. B 102, 224201 (2020). 10.1103/PhysRevB.102.224201 Google Scholar
- 37) J. E. S.Socolar, Phys. Rev. B 39, 10519 (1989). 10.1103/PhysRevB.39.10519 Google Scholar
- 38) M.Duneau, R.Mosseri, and C.Oguey, J. Phys. A 22, 4549 (1989). 10.1088/0305-4470/22/21/017 Google Scholar
- 39) M.Kohmoto and B.Sutherland, Phys. Rev. Lett. 56, 2740 (1986). 10.1103/PhysRevLett.56.2740 Google Scholar