Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 38, 011148 (2023) [6 pages]
Proceedings of the 29th International Conference on Low Temperature Physics (LT29)
Infrared Magneto-optical Kerr Effect Measurements by Polarization Modulation Method in Anisotropic Magnets
1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
3National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
4Department of Physics, Tohoku University, Sendai 980-8578, Japan
Received July 4, 2022

We have developed methods which can obtain infrared magneto-optical Kerr effect spectra in magnetic materials with considerable absorption in the infrared light region, and a corresponding analysis method within the range of approximations up to the first order in terms of the Kerr rotation angle and the Kerr ellipticity. The Fresnel coefficient tensor of CeSb could be obtained by considering the infrared light absorption. On the bases of this result, we propose an optics configuration and analysis method which can be applied to low-symmetric magnetic materials with birefringence and linear dichroism. By expressing the Fresnel coefficient tensor using general magneto-optical constants, we obtained a reasonable and quite concise expression for refractive index and dielectric constant tensors.

©2023 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) N.Nagaosa, J.Sinova, S.Onoda, A. H.MacDonald, and N. P.Ong, Rev. Mod. Phys. 82, 1539 (2010). 10.1103/RevModPhys.82.1539 Google Scholar
  • 2) S.Iguchi, S.Kumakura, Y.Onose, S.Bordács, I.Kézsmárki, N.Nagaosa, and Y.Tokura, Phys. Rev. Lett. 103, 267206 (2009). 10.1103/PhysRevLett.103.267206 Google Scholar
  • 3) M.Naka, S.Hayami, H.Kusunose, Y.Yanagi, Y.Motome, and H.Seo, Nat. Commun. 10, 4305 (2019). 10.1038/s41467-019-12229-y Google Scholar
  • 4) M.Naka, S.Hayami, H.Kusunose, Y.Yanagi, Y.Motome, and H.Seo, Phys. Rev. B 102, 075112 (2020). 10.1103/PhysRevB.102.075112 Google Scholar
  • 5) M.Abe, T.Kimura, and S.Nomura, Jpn. J. Appl. Phys. 14, 1507 (1975). 10.1143/JJAP.14.1507 Google Scholar
  • 6) W. J.Tabor and F. S.Chen, J. Appl. Phys. 40, 2760 (1969). 10.1063/1.1658074 Google Scholar
  • 7) S.Polisetty, J.Scheffler, S.Sahoo, Y.Wang, T.Mukherjee, X.He, and Ch.Binek, Rev. Sci. Instrum. 79, 055107 (2008). 10.1063/1.2932445 Google Scholar
  • 8) K.Sato, Jpn. J. Appl. Phys. 20, 2403 (1981). 10.1143/JJAP.20.2403 Google Scholar
  • 9) K.Sato, H.Hongu, H.Ikekame, Y.Tosaka, M.Watanabe, K.Takanashi, and H.Fujimori, Jpn. J. Appl. Phys. 32, 989 (1993). 10.1143/JJAP.32.989 Google Scholar
  • 10) T.Ishibashi, Z.Kuang, S.Yufune, T.Kawata, M.Oda, T.Tani, Y.Iimura, and K.Sato, J. Appl. Phys. 100, 093903 (2006). 10.1063/1.2357699 Google Scholar
  • 11) R.Pittini, J.Schoenes, O.Vogt, and P.Wachter, Phys. Rev. Lett. 77, 944 (1996). 10.1103/PhysRevLett.77.944 Google Scholar
  • 12) S.Kimura, H.Kitazawa, G.Kido, and T.Suzuki, J. Phys. Soc. Jpn. 69, 647 (2000). 10.1143/JPSJ.69.647[Abstract] Google Scholar