JPS Conf. Proc. 5, 011020 (2015) [7 pages]
Proceedings of Computational Science Workshop 2014 (CSW2014)
Molecular Dynamics Simulations to Clarify the Concentration Dependency of Protein Aggregation
1Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
2Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
3Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
4Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
5Information Technology Center, Nagoya University, Nagoya 464-8601, Japan
Received October 20, 2014

We examined the concentration dependency of amyloid protein aggregation by using several molecular dynamics simulations, which were performed with different concentrations for each system. For these simulations, we used a fragment of amyloid-β, which is believed to be the cause of Alzheimer’s disease, as our simulation system. We found that high concentration of amyloid peptides promotes the formation of β-structures which is the origin of amyloid fibrils.

©2015 The Physical Society of Japan

References

  • 1) T.Lührs, C.Ritter, M.Adrian, D.Riek-Loher, B.Bohrmann, H.Dobeli, D.Schubert, and R.Riek, Proc. Natl. Acad. Sci. U.S.A. 102, 17342 (2005). 10.1073/pnas.0506723102 Google Scholar
  • 2) F.Chiti and C. M.Dobson, Annu. Rev. Biochem. 75, 333 (2006). 10.1146/annurev.biochem.75.101304.123901 Google Scholar
  • 3) Y.Sugita and Y.Okamoto, Chem. Phys. Lett. 314, 141 (1999). 10.1016/S0009-2614(99)01123-9 Google Scholar
  • 4) E.Terzi, G.Hölzemann, and J.Seelig, Biochemistry 33, 7434 (1994). 10.1021/bi00189a051 Google Scholar
  • 5) I.Laczko, S.Holly, Z.Konya, K.Soos, J. L.Varga, M.Hollosi, and B.Penke, Biochem. Biophys. Res. Commun. 205, 120 (1994). 10.1006/bbrc.1994.2638 Google Scholar
  • 6) L. C.Serpell, Biochim. Biophys. Acta 1502, 16 (2000). 10.1016/S0925-4439(00)00029-6 Google Scholar
  • 7) C. S.Casley, J. M.Land, M. A.Sharpe, J. B.Clark, M. R.Duchen, and L.Canevari, Neurobiol. Dis. 10, 258 (2002). 10.1006/nbdi.2002.0516 Google Scholar
  • 8) A. M.D’Ursi, M. R.Armenante, R.Guerrini, S.Salvadori, G.Sorrentino, and D.Picone, J. Med. Chem. 47, 4231 (2004). 10.1021/jm040773o Google Scholar
  • 9) M. E.Clementi, S.Marini, M.Coletta, F.Orsini, B.Giardina, and F.Misiti, FEBS Lett. 579, 2913 (2005). 10.1016/j.febslet.2005.04.041 Google Scholar
  • 10) G.Wei and J.-E.Shea, Biophys. J. 91, 1638 (2006). 10.1529/biophysj.105.079186 Google Scholar
  • 11) Z.Fu, Y.Luo, P.Derreumaux, and G.Wei, Biophys. J. 97, 1795 (2009). 10.1016/j.bpj.2009.07.014 Google Scholar
  • 12) M. S.Shell, R.Ritterson, and K. A.Dill, J. Phys. Chem. B 112, 6878 (2008). 10.1021/jp800282x Google Scholar
  • 13) W.Kabsch and C.Sander, Biopolymers 22, 2577 (1983). 10.1002/bip.360221211 Google Scholar
  • 14) R. P.Joosten, T. A. H.Te Beek, E.Krieger, M. L.Hekkelman, R. W. W.Hooft, R.Schneider, C.Sander, and G.Vriend, Nucleic Acids Res. 39, D411 (2011). 10.1093/nar/gkq1105 Google Scholar