J. Phys. Soc. Jpn. 82, 013703 (2013) [4 Pages]
LETTERS

Synthesis and Physical Properties of the New Oxybismuthides BaTi2Bi2O and (SrF)2Ti2Bi2O with a d1 Square Net

+ Affiliations
1Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan2Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia3SPring-8/JASRI, Sayo, Hyogo 679-5198, Japan

We have recently reported the \(d^{1}\) square-lattice compound BaTi2Sb2O, which shows superconductivity at \(T_{\text{c}} = 1.2\) K coexisting with a charge- or spin-density wave (CDW/SDW) state. Here, we successfully prepared two new oxybismuthides, BaTi2Bi2O and (SrF)2Ti2Bi2O, as the first Pn = Bi compounds in the \(A\)Ti2 Pn 2O family. The CDW/SDW state disappeared for both compounds, presumably owing to the considerable interaction between the Ti-\(3d\) and Bi-\(6s\) orbitals. The complete suppression of the CDW/SDW instability resulted in an enhanced \(T_{\text{c}}\) of 4.6 K for BaTi2Bi2O. However, (SrF)2Ti2Bi2O exhibits no superconductivity, suggesting the importance of the interlayer interaction for superconductivity.

©2013 The Physical Society of Japan

References

  • 1 J. G.Bednorz and K. A.Müller: Z. Phys. B 64 (1986) 189. CrossrefGoogle Scholar
  • 2 Y.Kamihara, T.Watanabe, M.Hirano, and H.Hosono: J. Am. Chem. Soc. 130 (2008) 3296. CrossrefGoogle Scholar
  • 3 Y.Zhang, Y. W.Tan, H. L.Stormer, and P.Kim: Nature 438 (2005) 201. CrossrefGoogle Scholar
  • 4 J. A.Wilson, F. J.DiSalvo, and S.Mahajan: Phys. Rev. Lett. 32 (1974) 882. CrossrefGoogle Scholar
  • 5 R. C.Morris: Phys. Rev. Lett. 34 (1975) 1164. CrossrefGoogle Scholar
  • 6 M. Núñez-Regueiro, J. M.Mignot, M.Jaime, D.Castello, and P.Monceau: Synth. Met. 56 (1993) 2653. CrossrefGoogle Scholar
  • 7 E.Morosan, H. W.Zandbergen, B. S.Dennis, J. W. G.Bos, Y.Onose, T.Klimczuk, A. P.Ramirez, N. P.Ong, and R. J.Cava: Nat. Phys. 2 (2006) 544. CrossrefGoogle Scholar
  • 8 L.Fang, Y.Wang, P. Y.Zou, L.Tang, Z.Xu, H.Chen, C.Dong, L.Shan, and H. H.Wen: Phys. Rev. B 72 (2005) 014534. CrossrefGoogle Scholar
  • 9 R. H.Liu, Y. A.Song, Q. J.Li, J. J.Ying, Y. J.Yan, Y.He, and X. H.Chen: Chem. Mater. 22 (2010) 1503. CrossrefGoogle Scholar
  • 10 R. H.Liu, D.Tan, Y. A.Song, Q. J.Li, Y. J.Yan, J. J.Ying, Y. L.Xie, X. F.Wang, and X. H.Chen: Phys. Rev. B 80 (2009) 144516. CrossrefGoogle Scholar
  • 11 X. F.Wang, Y. J.Yan, J. J.Ying, Q. J.Li, M.Zhang, N.Xu, and X. H.Chen: J. Phys.: Condens. Matter 22 (2010) 075702. CrossrefGoogle Scholar
  • 12 E. A.AxtellIII, T.Ozawa, S. M.Kauzlarich, and R. R. P.Singh: J. Solid State Chem. 134 (1997) 423. CrossrefGoogle Scholar
  • 13 T. C.Ozawa and S. M.Kauzlarich: Chem. Mater. 13 (2001) 1804. CrossrefGoogle Scholar
  • 14 T.Yajima, K.Nakano, F.Takeiri, T.Ono, Y.Hosokoshi, Y.Matsushita, J.Hester, Y.Kobayashi, and H.Kageyama: J. Phys. Soc. Jpn. 81 (2012) 103706. LinkGoogle Scholar
  • 15 F.Izumi and K.Momma: Solid State Phenom. 130 (2007) 15. CrossrefGoogle Scholar
  • 16 W. E.Pickett: Phys. Rev. B 58 (1998) 4335. CrossrefGoogle Scholar
  • 17 L.Pauling: The Nature of the Chemical Bonds (Cornell University Press, Ithaca, NY, 1962). Google Scholar
  • 18 F. R.Gamble, J. H.Osiecki, M.Cais, R.Pisharody, F. J.Disalvo, and T. H.Geballe: Science 174 (1971) 493. CrossrefGoogle Scholar
  • 19 Q.Li, X. X.Xi, D.Wu, A.Inam, S.Vadlamannati, and W. L.Mclean: Phys. Rev. Lett. 64 (1990) 3086. CrossrefGoogle Scholar
  • 20 S.Zhang, M.Tanaka, and S.Yamanaka: Phys. Rev. B 86 (2012) 024516. CrossrefGoogle Scholar
  • 21 P.Doan, M.Gooch, Z.Tang, B.Lorenz, A. Möller, J.Tapp, P. C. W.Chu, and A. M.Guloy: J. Am. Chem. Soc. 134 (2012) 16520. CrossrefGoogle Scholar