J. Phys. Soc. Jpn. 82, 074707 (2013) [5 Pages]
FULL PAPERS

Tc Enhancement by Aliovalent Anionic Substitution in Superconducting BaTi2(Sb1-xSnx)2O

+ Affiliations
1Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6100, U.S.A.3Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia

BaTi2Sb2O is a \(T_{\text{c}}=1.2\) K superconductor with a \(d^{1}\) square lattice, and isovalent Bi substitution for Sb can increase its \(T_{\text{c}}\) to 4.6 K (BaTi2Bi2O), accompanied by the complete suppression of charge density wave (CDW) or spin density wave (SDW) transition. In the present study, we demonstrate that aliovalent Sn substitution (hole doping) also increases \(T_{\text{c}}\) up to 2.5 K for BaTi2(Sb0.7Sn0.3)2O, while suppressing CDW/SDW transition only slightly. The overall electronic phase diagram of BaTi2(Sb,Sn)2O is qualitatively similar to that of cation-substituted (hole-doped) (Ba,Na)Ti2Sb2O, but quantitative differences such as in \(T_{\text{c}}\) are observed, which is discussed in terms of Ti–Pn hybridization and chemical disorder.

©2013 The Physical Society of Japan

References

  • 1 E. A.AxtellIII, T.Ozawa, S. M.Kauzlarich, and R. R. P.Singh: J. Solid State Chem. 134 (1997) 423. CrossrefGoogle Scholar
  • 2 R. H.Liu, Y. A.Song, Q. J.Li, J. J.Ying, Y. J.Yan, Y.He, and X. H.Chen: Chem. Mater. 22 (2010) 1503. CrossrefGoogle Scholar
  • 3 R. H.Liu, D.Tan, Y. A.Song, Q. J.Li, Y. J.Yan, J. J.Ying, Y. L.Xie, X. F.Wang, and X. H.Chen: Phys. Rev. B 80 (2009) 144516. CrossrefGoogle Scholar
  • 4 T.Yajima, K.Nakano, F.Takeiri, T.Ono, Y.Hosokoshi, Y.Matsushita, J.Hester, Y.Kobayashi, and H.Kageyama: J. Phys. Soc. Jpn. 81 (2012) 103706. LinkGoogle Scholar
  • 5 T.Yajima, K.Nakano, F.Takeiri, J.Hester, T.Yamamoto, Y.Kobayashi, and H.Kageyama: J. Phys. Soc. Jpn. 82 (2013) 013703. LinkGoogle Scholar
  • 6 J. G.Bednorz and K. A.Muller: Z. Phys. B 64 (1986) 189. CrossrefGoogle Scholar
  • 7 T.Yajima, K.Nakano, F.Takeiri, Y.Nozaki, Y.Kobayashi, and H.Kageyama: J. Phys. Soc. Jpn. 82 (2013) 033705. LinkGoogle Scholar
  • 8 P.Doan, M.Gooch, Z.Tang, B.Lorenz, A.Moller, J.Tapp, P. C. W.Chu, and A. M.Guloy: J. Am. Chem. Soc. 134 (2012) 16520. CrossrefGoogle Scholar
  • 9 F.Izumi and K.Momma: Solid State Phenom. 130 (2007) 15. CrossrefGoogle Scholar
  • 10 (Supplemental Material) [laboratory XRD patterns of BaTi2(Sb1-x Snx)2O (x = 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, and 0.4)] is provided online. Google Scholar
  • 11 (Supplemental Material) [SEM–EDX analysis of BaTi2(Sb1-xSnx)2O (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3)] is provided online. Google Scholar
  • 12 M.Danura, K.Kudo, Y.Oshiro, S.Araki, T. C.Kobayashi, and M.Nohara: J. Phys. Soc. Jpn. 80 (2011) 103701. LinkGoogle Scholar
  • 13 S.Kasahara, T.Shibauchi, K.Hashimoto, Y.Nakai, H.Ikeda, T.Terashima, and Y.Matsuda: Phys. Rev. B 83 (2011) 060505. CrossrefGoogle Scholar
  • 14 (Supplemental Material) [synchrotron XRD refinement for BaTi2- (Sb0:8Sn0:2)2O at RT] is provided online. Google Scholar
  • 15 (Supplemental Material) [neutron diffraction refinement for BaTi2- Sb2O at 65K] is provided online. Google Scholar
  • 16 G. H.Grosch and K. J.Range: J. Alloys Compd. 235 (1996) 250. CrossrefGoogle Scholar
  • 17 A.Dascoulidou, F.Schucht, W.Jung, and H. U.Schuster: Z. Anorg. Allg. Chem. 624 (1998) 119. CrossrefGoogle Scholar
  • 18 (Supplemental Material) [field dependence of the magnetization of BaTi2(Sb0.8Sn0.2)2O at 1.85 K] is provided online. Google Scholar
  • 19 X. W.Yan and Z. Y.Lu: arXiv:1210.3481. Google Scholar
  • 20 L.Pauling: The Nature of the Chemical Bonds (Cornell University Press, Ithaca, NY, 1962). Google Scholar
  • 21 Y.Kamihara, T.Watanabe, M.Hirano, and H.Hosono: J. Am. Chem. Soc. 130 (2008) 3296. CrossrefGoogle Scholar
  • 22 L.Häggström, A.Gustavsson-Seidel, and H.Fjellvåg: Europhys. Lett. 9 (1989) 87. CrossrefGoogle Scholar
  • 23 M.Rotter, M.Tegel, D.Johrendt, I.Schellenberg, W.Hermes, and R.Pottgen: Phys. Rev. B 78 (2008) 020503(R). CrossrefGoogle Scholar
  • 24 K.Sasmal, B.Lv, B.Lorenz, A. M.Guloy, F.Chen, Y. Y.Xue, and C. W.Chu: Phys. Rev. Lett. 101 (2008) 107007. CrossrefGoogle Scholar
  • 25 Z.Bukowski, S.Weyeneth, R.Puzniak, J.Karpinski, and B.Batlogg: Physica C 470 (2010) S328. CrossrefGoogle Scholar
  • 26 N.Ni, S.Nandi, A.Kreyssig, A. I.Goldman, E. D.Mun, S. L.Budko, and P. C.Canfield: Phys. Rev. B 78 (2008) 014523. CrossrefGoogle Scholar
  • 27 C.Krellner, N. C.Canales, A.Jesche, H.Rosner, A.Ormeci, and C.Geibel: Phys. Rev. B 78 (2008) 100504(R). CrossrefGoogle Scholar
  • 28 J. H.Tapp, Z.Tang, B.Lv, K.Sasmal, B.Lorenz, C. W.Chu, and A. M.Guloy: Phys. Rev. B 78 (2008) 060505(R). CrossrefGoogle Scholar
  • 29 D. R.Parker, M. J.Pitcher, P. J.Baker, I.Franke, T.Lancaster, S. J.Blundell, and S. J.Clarke: Chem. Commun. (2009) 2189. CrossrefGoogle Scholar
  • 30 S.Kasahara, H. J.Sh, K.Hashimoto, S.Tonegawa, Y.Mizukami, T.Shibauchi, K.Sugimoto, T.Fukuda, T.Terashima, A. H.Nevidomskyy, and Y.Matsuda: Nature 486 (2012) 382. CrossrefGoogle Scholar
  • 31 S. J. E.Carlsson, F.Levy-Bertrand, C.Marcenat, A.Sulpice, J.Marcus, S.Pairis, T.Klein, M.Nunez Regueiro, G.Garbarino, T.Hansen, V.Nassif, and P.Toulemonde: Phys. Rev. B 84 (2011) 104523. CrossrefGoogle Scholar